Ob jectives The European Society of Radiology identified 10 common indications for computed tomography (CT) as part of the European Study on Clinical Diagnostic Reference Levels (DRLs, EUCLID), to help standardize radiation doses. The objective of this study is to generate DRLs and median doses for these indications using data from the UCSF CT International Dose Registry. Methods Standardized data on 3.7 million CTs in adults were collected between 2016 and 2019 from 161 institutions across seven countries (United States of America (US), Switzerland, Netherlands, Germany, UK, Israel, Japan). DRLs (75th percentile) and median doses for volumetric CT-dose index (CTDIvol) and dose-length product (DLP) were assessed for each EUCLID category (chronic sinusitis, stroke, cervical spine trauma, coronary calcium scoring, lung cancer, pulmonary embolism, coronary CT angiography, hepatocellular carcinoma (HCC), colic/abdominal pain, appendicitis), and US radiation doses were compared with European. Results The number of CT scans within EUCLID categories ranged from 8,933 (HCC) to over 1.2 million (stroke). There was greater variation in dose between categories than within categories (p < .001), and doses were significantly different between categories within anatomic areas. DRLs and median doses were assessed for all categories. DRLs were higher in the US for 9 of the 10 indications (except chronic sinusitis) than in Europe but with a significantly higher sample size in the US. Conclusions DRLs for CTDIvol and DLP for EUCLID clinical indications from diverse organizations were established and can contribute to dose optimization. These values were usually significantly higher in the US than in Europe. Key Points • Registry data were used to create benchmarks for 10 common indications for CT identified by the European Society of Radiology. • Observed US radiation doses were higher than European for 9 of 10 indications (except chronic sinusitis). • The presented diagnostic reference levels and median doses highlight potentially unnecessary variation in radiation dose.
Purpose To assess suspected acute stroke, the computed tomography (CT) protocol contains a non-contrast CT (NCCT), a CT angiography (CTA), and a CT perfusion (CTP). Due to assumably high radiation doses of the complete protocol, the aim of this study is to examine radiation exposure and to establish diagnostic reference levels (DRLs). Methods In this retrospective study, dose data of 921 patients with initial CT imaging for suspected acute stroke and dose monitoring with a DICOM header–based tracking and monitoring software were analyzed. Between June 2017 and January 2020, 1655 CT scans were included, which were performed on three different modern multi-slice CT scanners, including 921 NCCT, 465 CTA, and 269 CTP scans. Radiation exposure was reported for CT dose index (CTDIvol) and dose-length product (DLP). DRLs were set at the 75th percentile of dose distribution. Results DRLs were assessed for each step (CTDIvol/DLP): NCCT 33.9 mGy/527.8 mGy cm and CTA 13.7 mGy/478.3 mGy cm. Radiation exposure of CTP was invariable and depended on CT device and its protocol settings with CTDIvol 124.9–258.2 mGy and DLP 1852.6–3044.3 mGy cm. Conclusion Performing complementary CT techniques such as CTA and CTP for the assessment of acute stroke increases total radiation exposure. Hence, the revised DRLs for the complete protocol are required, where our local DRLs may help as benchmarks.
Purpose The aim of this study was to determine local diagnostic reference levels (DRLs) during endovascular diagnostics and therapy of carotid-cavernous fistulas (CCF). Methods In a retrospective study design, DRLs, achievable dose (AD) and mean values were assessed for all patients with CCF undergoing diagnostic angiography (I) or embolization (II). All procedures were performed with the flat-panel angiography system Allura Xper (Philips Healthcare). Interventional procedures were differentiated according to the type of CCF and the type of procedure. Results In total, 86 neurointerventional procedures of 48 patients with CCF were executed between February 2010 and July 2021. The following DRLs, AD and mean values could be determined: (I) DRL 215 Gy ∙ cm2, AD 169 Gy ∙ cm2, mean 165 Gy ∙ cm2; (II) DRL 350 Gy ∙ cm2, AD 226 Gy ∙ cm2, mean 266 Gy ∙ cm2. Dose levels of embolization were significantly higher compared to diagnostic angiography (p < 0.001). No significant dose difference was observed with respect to the type of fistula or the embolization method. Conclusion This article reports on diagnostic and therapeutic DRLs in the management of CCF that could serve as a benchmark for the national radiation protection authorities. Differentiation by fistula type or embolization method does not seem to be useful.
Purpose This study aims to determine local diagnostic reference levels (DRLs) in the endovascular therapy (EVT) of patients with cranial and spinal dural arteriovenous fistula (dAVF). Methods In a retrospective study design, DRLs and achievable dose (AD) were assessed for all patients with cranial and spinal dAVF undergoing EVT (I) or diagnostic angiography (II). All procedures were performed at the flat-panel angiography-system Allura Xper (Philips Healthcare). Interventional procedures were differentiated according to the region of fistula and the type of procedure. Results In total, 264 neurointerventional procedures of 131 patients with dAVF (94 cranial, 37 spinal) were executed between 02/2010 and 12/2020. The following DRLs, AD, and mean values could be determined: for cranial dAVF (I) DRL 507.33 Gy cm2, AD 369.79 Gy cm2, mean 396.51 Gy cm2; (II) DRL 256.65 Gy cm2, AD 214.19 Gy cm2, mean 211.80 Gy cm2; for spinal dAVF (I) DRL 482.72 Gy cm2, AD 275.98 Gy cm2, mean 347.12 Gy cm2; (II) DRL 396.39 Gy cm2, AD 210.57 Gy cm2, mean 299.55 Gy cm2. Dose levels of EVT were significantly higher compared to diagnostic angiographies (p < 0.001). No statistical difference in dose levels regarding the localization of dAVF was found. Conclusion Our results could be used for establishing DRLs in the EVT of cranial and spinal dAVF. Because radiation exposure to comparably complex interventions such as AVM embolization is similar, it may be useful to determine general DRLs for both entities together.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.