This research aims to extend the existing knowledge on air quality improvement by the arboreal–shrub heritage. The PM accumulation (PM10–100, PM2.5–10, and PM0.2–2.5 (µg·cm−2)) was measured with consolidated gravimetric techniques during spring, summer, and fall for 2160 leaf samples belonging to the basal, median, and apical part of the crown of 17 species located in the streets and parks of 2 European cities (Rimini and Krakow). On the same samples, the deposition (PM10 and PM2.5 (µg·cm−2·day−1)) was evaluated according to a model based on the wash-off rain effect. Quercus ilex accumulated more PMx than the other species in Rimini, while in Krakow, the highest accumulators were Pinus nigra for PM10–100, Tilia cordata for PM2.5–10, and Populus nigra for PM0.2–2.5. Only in Krakow was the capture capacity of some species affected by the street or park growing condition. The basal leaves showed greater PM10–100 accumulation than the median and apical ones. In Rimini, the total PM accumulation tended to increase throughout the year, while in Krakow, the opposite occurred. However, as the accumulation increased, the deposition decreased. The PM accumulation was reduced by rainfall and enhanced by the air PM concentration, while the wind speed effect was opposite, depending on the city. These findings are useful for directing decision makers in the design of greener, healthier, and sustainable cities.
The goal of this work was to assess the effects of mycorrhizal inoculation and deficit irrigation applied in the nursery on the post-transplant growth and physiology of Acer campestre L. and Tilia cordata Mill. For this purpose, 144 preconditioned plants were planted in an experimental plot in northern Italy and were monitored for three growing seasons. Controlled inoculation in the nursery enhanced the root colonization rate three years after transplanting only in Acer campestre. Inoculated Acer campestre showed higher survival, shoot length, turgor potential and leaf gas exchange than non-inoculated plants throughout the experiment. By contrast, in Tilia cordata, no difference in root colonization by mycorrhizal fungi was observed between plants inoculated or not in the nursery three years after transplanting. Indeed, the survival, growth and physiology of Tilia cordata after transplanting were little affected by inoculation. Deficit irrigation in the nursery determined higher survival, growth and CO2 assimilation rate and more favorable water relations in newly transplanted Acer campestre. By contrast, Tilia cordata exposed to deficit irrigation in the nursery showed lower growth and unaffected survival after transplanting compared to plants which received full irrigation in the nursery. The overall results suggest that nursery preconditioning through mycorrhizal inoculation and deficit irrigation can affect post-transplant performances, although their effectiveness depends on species’ mycorrhizal dependency and water use strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.