Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimer’s Disease. The Alzheimer’s Disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state-of-the-art in predicting cognitive outcomes in Alzheimer’s Disease based on high-dimensional, publicly available genetic and structural imaging data. This meta-analysis failed to identify a meaningful predictor developed from either data modality, suggesting that alternate approaches should be considered for to prediction of cognitive performance.
Abstract.We recently proposed a novel clone-by-clone protocol for de novo genome sequencing that leverages combinatorial pooling design to overcome the limitations of DNA barcoding when multiplexing a large number of samples on second-generation sequencing instruments. Here we address the problem of correcting the short reads obtained from our sequencing protocol. We introduce a novel algorithm called Scrible that exploits properties of the pooling design to accurately identify/correct sequencing errors and minimize the chance of "over-correcting". Experimental results on synthetic data on the rice genome demonstrate that our method has much higher accuracy in correcting short reads compared to state-of-the-art error-correcting methods. On real data on the barley genome we show that Scrible significantly improves the decoding accuracy of short reads to individual BACs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.