The activities of three enzymes of phenolic biosynthesis and six of general metaboUsm were studied at 24-hour intervals between the 3rd and 8th day after planting in barley shoots treated with the chlorosis-inducing herbicide Sandoz 6706 and grown in the dark or under high or low intensity Ught. The herbicide had no effect on fresh weight or soluble protein (per shoot) in plants grown in the dark or under low intensity light, but slightly decreased these parameters in plants grown for more than 5 days under high intensity light. In dark-grown seedlings the herbicide had no detectable effects on plastid ultrastructure or on the activity of malate dehydrogenase, cytochrome c oxidase, NADP-cytochrome c reductase, triose phosphate isomerase, peroxidase, catalase, shikimate dehydrogenase, phenylalanine ammonia-lyase, or chalcone-flavanone isomerase. Under low intensity light, Sandoz 6706-treated plants developed plastids with single thylakoids extending across the organelie, and the activity of al enzymes examined was increased to varying degrees. When the herbicide-treated plants were grown under high intensity Ught, plastid lamelar organization was severely disrupted. Activities of shikimate dehydrogenase and chalcone-flavanone isomerase were markedly enhanced, phenylalanine ammonia-lyase activity sUghtly promoted, and catalase activity severely inhibited. The other enzymes were not appreciably affected by Sandoz 6706 under high intensity light. It is concluded that the changes in plastid ultrastructure and enzyme activities of the herbicide-treated plants are largely secondary photomorphogenetic or photooxidative responses in the carotenoid-free plants in which chlorophylls accumulate in reduced amounts (low intensity light) or are completely absent (high intensity light).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.