On the basis of the reported enhanced antisense activity of polylysine-oligonucleotide conjugates, a synthetic 12-mer oligodeoxyribonucleotide has been coupled at its 5' terminus to a series of positively charged (delta-ornithine)n cysteine peptides. Binding between the nucleic acid-peptide conjugate and its complementary DNA target sequence was detected by the impact of complexation on the melting temperature (Tm). It was found that the Tm for the nucleic acid-peptide gradually increased with increasing net charge on the conjugated peptide. Site-directed cleavage with RNase H demonstrates that the peptide-modified oligomer also hybridizes with its RNA target sequence. Increased affinity for target mRNA with net charge was shown by a cell-free translation arrest assay.
The hybridization properties of a series of probes, based on two 9mer oligodeoxynucleotides (designated as I and II) having an appended oligoarginine chain (Rn) to produce peptide-oligonucleotide conjugates or peptide-bridged oligonucleotide pairs (e.g. Rn-I or II-Rn-I), were investigated. For the double-linked probes, we found that the peptide bridge induces the two 9mers to bind complementary single-stranded DNA or RNA targets with substantially enhanced thermal stability. The resulting hybrid with complementary DNA was found to assume a 1:1 complex in the B conformation as judged by UV mixing curves and CD spectroscopy. Complexes of single or double-linked probes with complementary RNA exhibited sensitivity to RNase H digestion. The influence of the identity and chirality of the repeating unit in the bridge, the length of the bridge, the gap size and the salt concentration on the hybridization properties of this new class of oligonucleotide probes was also studied. Our data reveal that these compounds exhibit properties that should prove useful in the development of antisense strategies.
The intracellular killer virions of yeast co-purify with an RNA polymerase activity which catalyzes the synthesis of full-length transcripts of the two viral genomic double-stranded RNA segments. This polymerase utilizes ribonucleoside diphosphates or triphosphates as substrates. The virions have other associated nucleotide-metabolizing enzyme activities, including nucleoside diphosphate kinase, adenosine monophosphate kinase, and nucleoside triphosphate phosphotransferase, an activity which catalyzes the exchange of gamma-phosphate from any ribonucleoside triphosphate with any ribonucleoside or deoxyribonucleoside triphosphate. The purified virions also contain an inorganic pyrophosphatase activity. These enzymes may allow the virus to utilize nucleotide pools distinct from those utilized in host cell transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.