Good clinical practice recommends folic acid supplementation 1 month prior to pregnancy and during the first trimester to prevent congenital malformations. However, high rates of fetal growth and development in later pregnancy may increase the demand for folate. Folate and vitamins B12 and B6 are required for DNA synthesis and cell growth, and are involved in homocysteine metabolism. The primary aim of this study was to determine if maternal folate, vitamin B12, vitamin B6 and homocysteine concentrations at 18-20 weeks gestation are associated with subsequent adverse pregnancy outcomes, including pre-eclampsia and intrauterine growth restriction (IUGR). The secondary aim was to investigate maternal B vitamin concentrations with DNA damage markers in maternal lymphocytes. A prospective observational study was conducted at the Women's and Children's Hospital, Adelaide, South Australia. One hundred and thirty-seven subjects were identified prior to 20 weeks gestation as at high or low risk for subsequent adverse pregnancy outcome by senior obstetricians. Clinical status, dietary information, circulating micronutrients and genome damage biomarkers were assessed at 18-20 weeks gestation. Women who developed IUGR had reduced red blood cell (RBC) folate (P < 0.001) and increased plasma homocysteine concentrations (P < 0.001) compared with controls. Maternal DNA damage, represented by micronucleus frequency and nucleoplasmic bridges in lymphocytes, was positively correlated with homocysteine (r = 0.179, P = 0.038 and r = 0.171, P = 0.047, respectively). Multivariate regression analysis revealed RBC folate was a strong predictor of IUGR (P = 0.006). This study suggests that low maternal RBC folate and high homocysteine values in mid pregnancy are associated with subsequent reduced fetal growth.
Single nucleotide polymorphisms and pre-and peri-conception folic acid (FA) supplementation and dietary data were used to identify one-carbon metabolic factors associated with pregnancy outcomes in 3196 nulliparous women. In 325 participants, we also measured circulating folate, vitamin B12 and homocysteine. Pregnancy outcomes included preeclampsia (PE), gestational hypertension (GHT), small for gestational age (SGA), spontaneous preterm birth (sPTB) and gestational diabetes mellitus (GDM). Study findings show that maternal genotype MTHFR A1298C(CC) was associated with increased risk for PE, whereas TCN2 C766G(GG) had a reduced risk for sPTB. Paternal MTHFR A1298C(CC) and MTHFD1 G1958A(AA) genotypes were associated with reduced risk for sPTB, whereas MTHFR C677T(CT) genotype had an increased risk for GHT. FA supplementation was associated with higher serum folate and vitamin B12 concentrations, reduced uterine artery resistance index and increased birth weight. Women who supplemented with <800 μg daily FA at 15-week gestation had a higher incidence of PE (10.3%) compared with women who did not supplement (6.1%) or who supplemented with ≥800 μg (5.4%) (P < .0001). Higher serum folate levels were found in women who later developed GDM compared with women with uncomplicated pregnancies (Mean ± SD: 37.6 ± 8 nmol L −1 vs. 31.9 ± 11.2, P = .007). Fast food consumption was associated with increased risk for developing GDM, whereas low consumption of green leafy vegetables and fruit were independent risk factors for SGA and GDM and sPTB and SGA, respectively. In conclusion, maternal and paternal genotypes, together with maternal circulating folate and homocysteine concentrations, and pre-and early-pregnancy dietary factors, are independent risk factors for pregnancy complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.