Objective Abscisic acid (ABA) is a plant hormone also present and active in animals. In mammals, ABA regulates blood glucose levels by stimulating insulin-independent glucose uptake and metabolism in adipocytes and myocytes through its receptor LANCL2. The objective of this study was to investigate whether another member of the LANCL protein family, LANCL1, also behaves as an ABA receptor and, if so, which functional effects are mediated by LANCL1. Methods ABA binding to human recombinant LANCL1 was explored by equilibrium-binding experiments with [ 3 H]ABA, circular dichroism, and surface plasmon resonance. Rat L6 myoblasts overexpressing either LANCL1 or LANCL2, or silenced for the expression of both proteins, were used to investigate the basal and ABA-stimulated transport of a fluorescent glucose analog (NBDG) and the signaling pathway downstream of the LANCL proteins using Western blot and qPCR analysis. Finally, glucose tolerance and sensitivity to ABA were compared in LANCL2 −/− and wild-type (WT) siblings. Results Human recombinant LANCL1 binds ABA with a K d between 1 and 10 μM, depending on the assay (i.e., in a concentration range that lies between the low and high-affinity ABA binding sites of LANCL2). In L6 myoblasts, LANCL1 and LANCL2 similarly, i) stimulate both basal and ABA-triggered NBDG uptake (4-fold), ii) activate the transcription and protein expression of the glucose transporters GLUT4 and GLUT1 (4-6-fold) and the signaling proteins AMPK/PGC-1α/Sirt1 (2-fold), iii) stimulate mitochondrial respiration (5-fold) and the expression of the skeletal muscle (SM) uncoupling proteins sarcolipin (3-fold) and UCP3 (12-fold). LANCL2 −/− mice have a reduced glucose tolerance compared to WT. They spontaneously overexpress LANCL1 in the SM and respond to chronic ABA treatment (1 μg/kg body weight/day) with an improved glycemia response to glucose load and an increased SM transcription of GLUT4 and GLUT1 (20-fold) of the AMPK/PGC-1α/Sirt1 pathway and sarcolipin, UCP3, and NAMPT (4- to 6-fold). Conclusions LANCL1 behaves as an ABA receptor with a somewhat lower affinity for ABA than LANCL2 but with overlapping effector functions: stimulating glucose uptake and the expression of muscle glucose transporters and mitochondrial uncoupling and respiration via the AMPK/PGC-1α/Sirt1 pathway. Receptor redundancy may have been advantageous in animal evolution, given the role of the ABA/LANCL system in the insulin-independent stimulation of cell glucose uptake and energy metabolism.
Shedding of ADAM10 substrates, like TNFα, MICA or CD30, is reported to affect both anti-tumor immune response and antibody-drug-conjugate (ADC)-based immunotherapy. Soluble forms of these molecules and ADAM10 can be carried and spread in the microenvironment by exosomes released by tumor cells. We reported new ADAM10 inhibitors able to prevent MICA shedding in Hodgkin lymphoma (HL), leading to recognition of HL cells by cytotoxic lymphocytes.In this paper, we show that the mature bioactive form of ADAM10 is released in exosome-like vesicles (ExoV) by HL cells and lymph node mesenchymal stromal cells (MSC). We demonstrate that ADAM10 inhibitors are released in ExoV by MSC or HL cells, endocytosed by bystander cells and localized in the endolysosomal compartment in HL MSC. ExoV released by HL cells can enhance MICA shedding by MSC, while ExoV from MSC induce TNFα or CD30 shedding by HL cells. Of note, ADAM10 sheddase activity carried by ExoV is prevented with the ADAM10 inhibitors LT4 and CAM29, pretreating either the ExoV-producing or the ExoV-receiving cells. In particular, both inhibitors reduce CD30 shedding maintaining the anti-tumor effects of the ADC Brentuximab-Vedotin or the anti-CD30 Iratumumab on HL cells.Thus, spreading of ADAM10 activity due to ExoV can result in the release of cytokines, like TNFα, a lymphoma growth factor, or soluble molecules, like sMICA or sCD30, that potentially interfere with host immune surveillance or immunotherapy. ADAM10 blockers can interfere with this process, allowing the development of anti-lymphoma immune response and/or efficient ADC-based or human antibody-based immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.