A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared with identical ground control cultures. Global microarray and proteomic analyses revealed that 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground-based microgravity culture model. Space flight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during space flight missions and provide novel therapeutic options on Earth.
Francisella sp. is an emergent bacterial pathogen that causes acute to chronic disease in warm and cold water cultured and wild fish species. During the past 3 years, the bacterium has been detected in tilapia, Oreochromis niloticus, cultured in Costa Rica. Infected fish presented non-specific clinical signs, such as erratic swimming, anorexia, anaemia, exophthalmia and high mortality. Upon macroscopic and microscopic examination, several internal organs (mainly spleen and kidney) were enlarged and contained white nodules. Histological examination revealed the presence of multifocal granulomatous lesions, with the presence of numerous small, pleomorphic, cocco-bacilli. The bacteria were isolated from infected tilapia on selective media and grown on several media with and without antibiotics. Specific PCR primers to the Francisella genus were used to confirm the preliminary diagnoses. In comparison with several bacterial 16S rRNA sequences, our isolate was found to share 99% identity with other Fransicella spp. isolated from fish, and more than 97% identity to the human pathogen Francisella tularensis. Koch's postulates were fulfilled after experimental intraperitoneal and gill exposure challenges.
Members of the genus Francisella are small Gram-negative facultative intracellular bacteria that cause francisellosis in a wide variety of fish species worldwide. F. noatunensis subsp. orientalis has been recently described as a warm-water pathogen of tilapia Oreochromis spp. In this study, a quantitative real-time polymerase chain reaction (qPCR) TaqMan probe assay was developed to rapidly and accurately detect and quantify F. noatunensis subsp. orientalis from fish tissue. The target region of the assay was the F. tularensis iglC gene homologue previously found in F. noatunensis subsp. orientalis. Probe specificity was confirmed by the lack of signal and cross-reactivity with 12 common fish pathogens, 2 subspecies of F. tularensis, F. noatunensis subsp. noatunensis, and tilapia tissue. The range of linearity was determined to be 50 fg to 1.4 mg, and the lower limit of detection was 50 fg of DNA (equivalent to ~25 genome equivalents) per reaction. A similar sensitivity was observed with DNA extracted from a mixture of F. noatunensis subsp. orientalis and fish tissue. The assay was also able to detect and quantify F. noatunensis subsp. orientalis from the spleens of experimentally infected tilapia. No signal was observed in the control groups. In conclusion, we have developed a highly sensitive and specific assay that can be used for the specific identification and quantification of F. noatunensis subsp. orientalis.
KEY WORDS: Francisella · Tilapia · qPCRResale or republication not permitted without written consent of the publisher
Edwardsiella ictaluri is the leading cause of mortality in channel catfish culture, but little is known about its pathogenesis. The use of signature-tagged mutagenesis in a waterborne infection model resulted in the identification of 50 mutants that were unable to infect/survive in catfish. Nineteen had minitransposon insertions in miscellaneous genes in the chromosome, 10 were in genes that matched to hypothetical proteins, and 13 were in genes that had no significant matches in the NCBI databases. Eight insertions were in genes encoding proteins associated with virulence in other pathogens, including three in genes involved in lipopolysaccharide biosynthesis, three in genes involved in type III secretion systems (TTSS), and two in genes involved in urease activity. With the use of a sequence from a lambda clone carrying several TTSS genes, Blastn analysis of the partially completed E. ictaluri genome identified a 26,135-bp pathogenicity island containing 33 genes of a TTSS with similarity to the Salmonella pathogenicity island 2 class of TTSS. The characterization of a TTSS apparatus mutant indicated that it retained its ability to invade catfish cell lines and macrophages but was defective in intracellular replication. The mutant also invaded catfish tissues in numbers equal to those of invading wild-type E. ictaluri bacteria but replicated poorly and was slowly cleared from the tissues, while the wild type increased in number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.