In Europe, approximately 84% of cultivated crop species depend on insect pollinators, mainly bees. Apis mellifera (the Western honey bee) is the most important commercial pollinator worldwide. The Gram-positive bacterium Melissococcus plutonius is the causative agent of European foulbrood (EFB), a global honey bee brood disease. In order to detect putative virulence factors, we sequenced and analyzed the genomes of 14 M. plutonius strains, including two reference isolates. The isolates do not show a high diversity in genome size or number of predicted protein-encoding genes, ranging from 2.021 to 2.101 Mbp and 1589 to 1686, respectively. Comparative genomics detected genes that might play a role in EFB pathogenesis and ultimately in the death of the honey bee larvae. These include bacteriocins, bacteria cell surface- and host cell adhesion-associated proteins, an enterococcal polysaccharide antigen, an epsilon toxin, proteolytic enzymes, and capsule-associated proteins. In vivo expression of three putative virulence factors (endo-alpha-N-acetylgalactosaminidase, enhancin and epsilon toxin) was verified using naturally infected larvae. With our strain collection, we show for the first time that genomic differences exist between non-virulent and virulent typical strains, as well as a highly virulent atypical strain, that may contribute to the virulence of M. plutonius. Finally, we also detected a high number of conserved pseudogenes (75 to 156) per genome, which indicates genomic reduction during evolutionary host adaptation.
In terrestrial ecosystems most plant species live in mutualistic symbioses with nutrient-delivering arbuscular mycorrhizal (AM) fungi. Establishment of AM symbioses includes transient, intracellular formation of fungal feeding structures, the arbuscules. A plant-derived peri-arbuscular membrane (PAM) surrounds the arbuscules, mediating reciprocal nutrient exchange. Signaling at the PAM must be well coordinated to achieve this dynamic cellular intimacy. Here, we identify the PAM-specific Arbuscular Receptor-like Kinase 1 (ARK1) from maize and rice to condition sustained AM symbiosis. Mutation of rice ARK1 causes a significant reduction in vesicles, the fungal storage structures, and a concomitant reduction in overall root colonization by the AM fungus Rhizophagus irregularis. Arbuscules, although less frequent in the ark1 mutant, are morphologically normal. Co-cultivation with wild-type plants restores vesicle and spore formation, suggesting ARK1 function is required for the completion of the fungal life-cycle, thereby defining a functional stage, post arbuscule development.
Plant cell walls constitute physical barriers that restrict access of microbial pathogens to the contents of plant cells. The primary cell wall of multicellular plants predominantly consists of cellulose, hemicellulose, and pectin, and its composition can change upon stress. BETA-XYLOSIDASE4 (BXL4) belongs to a seven-member gene family in Arabidopsis (Arabidopsis thaliana), one of which encodes a protein (BXL1) involved in cell wall remodelling. We assayed the influence of BXL4 on plant immunity and investigated the subcellular localization and enzymatic activity of BXL4, making use of mutant and overexpression lines. BXL4 localized to the apoplast and was induced upon infection with the necrotrophic fungal pathogen Botrytis cinerea in a jasmonoyl isoleucine (JA-Ile)–dependent manner. The bxl4 mutants showed a reduced resistance to B. cinerea, while resistance was increased in conditional overexpression lines. Ectopic expression of BXL4 in Arabidopsis seed coat epidermal cells rescued a bxl1 mutant phenotype, suggesting that, like BXL1, BXL4 has both xylosidase and arabinosidase activity. We conclude that BXL4 is an xylosidase/arabinosidase that is secreted to the apoplast and its expression is upregulated under pathogen attack, contributing to immunity against B. cinerea, possibly by removal of arabinose and xylose side-chains of polysaccharides in the primary cell wall.
IMPORTIN-a3/MOS6 (MODIFIER OF SNC1, 6) is one of nine importin-a isoforms in Arabidopsis that recruit nuclear localization signal-containing cargo proteins to the nuclear import machinery. IMP-a3/MOS6 is required genetically for full autoimmunity of the nucleotide-binding leucine-rich repeat immune receptor mutant snc1 (suppressor of npr1-1, constitutive 1) and MOS6 also contributes to basal disease resistance. Here, we investigated the contribution of the other importin-a genes to both types of immune responses, and we analyzed potential interactions of all importin-a isoforms with SNC1. By using reverse-genetic analyses in Arabidopsis and proteinÀprotein interaction assays in Nicotiana benthamiana, we provide evidence that among the nine a-importins in Arabidopsis, IMP-a3/MOS6 is the main nuclear transport receptor of SNC1, and that IMP-a3/MOS6 is required selectively for autoimmunity of snc1 and basal resistance to mildly virulent Pseudomonas syringae in Arabidopsis.
The Arabidopsis nuclear transport receptor IMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is required for constitutive defense responses of the auto-immune mutant snc1 (suppressor of npr1-1, constitutive 1) and contributes to basal disease resistance, suggesting a role in nuclear import of defense-regulatory cargo proteins. We recently showed that MOS6 selectively interacts with TN13, a TIR-NBS protein involved in basal resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 lacking the effectors AvrPto and AvrPtoB. Consistent with a predicted N-terminal transmembrane domain, TN13 localizes to the endoplasmic reticulum (ER) and the nuclear envelope (NE) where it interacts with MOS6 in a transient expression assay. Here, we propose a model that summarizes the subcellular localization, association and function of TN13 and MOS6 in plant defense signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.