Heart failure (HF) is a leading cause of morbidity and mortality worldwide and is most often precipitated by myocardial infarction. However, the molecular changes driving cardiac dysfunction immediately after myocardial infarction remain poorly understood. Myofilament proteins, responsible for cardiac contraction and relaxation, play critical roles in signal reception and transduction in HF. Post-translational modifications of myofilament proteins afford a mechanism for the beat-to-beat regulation of cardiac function. Thus it is of paramount importance to gain a comprehensive understanding of post-translational modifications of myofilament proteins involved in regulating early molecular events in the post-infarcted myocardium. We have developed a novel liquid chromatography–mass spectrometry-based top-down proteomics strategy to comprehensively assess the modifications of key cardiac proteins in the myofilament subproteome extracted from a minimal amount of myocardial tissue with high reproducibility and throughput. The entire procedure, including tissue homogenization, myofilament extraction, and on-line LC/MS, takes less than three hours. Notably, enabled by this novel top-down proteomics technology, we discovered a concerted significant reduction in the phosphorylation of three crucial cardiac proteins in acutely infarcted swine myocardium: cardiac troponin I and myosin regulatory light chain of the myofilaments and, unexpectedly, enigma homolog isoform 2 (ENH2) of the Z-disc. Furthermore, top-down MS allowed us to comprehensively sequence these proteins and pinpoint their phosphorylation sites. For the first time, we have characterized the sequence of ENH2 and identified it as a phosphoprotein. ENH2 is localized at the Z-disc, which has been increasingly recognized for its role as a nodal point in cardiac signaling. Thus our proteomics discovery opens up new avenues for the investigation of concerted signaling between myofilament and Z-disc in the early molecular events that contribute to cardiac dysfunction and progression to HF.
Many studies of the molecular and biochemical aspects of mammalian fertilization have focused on the interaction of the spermatozoa with the zona pellucida (ZP). The zona pellucida, a unique extracellular matrix surrounding the mammalian oocyte, is formed during ovarian follicular development. Following ovulation of the mature ovum, the spermatozoa must bind to and penetrate this matrix before the fertilization process is completed and the male and female genetic information combine. Although numerous models for this interaction have been proposed, the complete process has yet to be elucidated. The precise mechanisms by which these interactions occur also vary markedly among different mammalian species, making it more difficult to establish a unified model. To a great extent, the study of the molecules involved in these interactions have been limited because small numbers of female gametes are available for these studies. The recent development of techniques to isolate large numbers of zonae pellucidae as well as advances in immunological and molecular biology techniques have permitted the detailed characterization of ZP proteins. Although there is a paucity of information on the post-translational modification and extracellular processing of these molecules which result in matrix formation, a number of properties have been elucidated allowing better correlation between the structure and function of different ZP proteins among species. This review reflects these studies in relation to protein nomenclature and the molecular complexity of ZP antigens.
Cancer cells have abnormal cell cycle regulation which favors accelerated proliferation, chromosomal instability, and resistance to the senescence response. Although the p16INK4a locus is the most prominent susceptibility locus for familial melanomas, the low frequency of p16 mutations in sporadic melanomas suggests additional alterations in other cell cycle regulatory genes. Here we used primary melanoma tumors to reveal early cell cycle alterations that could be masked in advanced metastatic lesions due to their inherently high genetic instability. Unexpectedly, the cyclin-dependent kinase inhibitors p27KIP1 and/or p21Waf-1/SDI-1 were found to be expressed in 13 of 18 (72%) of the primary melanomas with a Breslow thickness greater than 0.076 mm. In general, p27 and/or p21 staining in the primary tumors correlated with low Ki-67 index. Importantly, most of the p21- and p27-positive tumors expressed high levels of cyclin D1 and cyclin E. In proliferating cells p27 is predominantly associated with cyclin D-CDK4 complexes, but does not inhibit the kinase activity, whereas in quiescent cells p27 is found associated with inactive CDK2 complexes. p27 was also expressed at high levels in proliferating primary melanomas in culture, and found to be associated with active cyclin E-CDK2 complexes containing high levels of cyclin E. It is thus likely that accumulation of cyclin E overcomes the potent inhibitory activity of p27 and p21 in CDK2 complexes. Of the primary melanomas with no indication of invasiveness, only three of 15 (20%) were positive for p27 and/or p21. We propose that high levels of p27 and p21 may confer upon melanoma tumors their characteristic resistance to conventional therapies. In turn, high levels of cyclins E and D1 may contribute to unlimited proliferation in primary melanomas that express the tumor suppressor p16INK4. J Invest Dermatol 113:1039-1046 1999
Melanocyte-stimulating hormone (alpha-MSH) increases cytosolic levels of cAMP as well as tyrosinase activity in murine melanocytes. These activities depend upon the presence of melanin precursors and may differ in human melanocytes. In this study, we demonstrate that high levels of tyrosine (3.7 mM), the chief melanin precursor, reduced the proliferative effect of alpha-MSH and altered human melanocyte morphology as compared to treatment with low (25-30 microM, half-physiological) levels of tyrosine. The anti-proliferative effect of high levels of tyrosine was not restricted to alpha-MSH; tyrosine also reduced proliferation induced by forskolin, a direct activator of the cAMP pathway. Exposure to low tyrosine levels and alpha-MSH induced a dendritic morphology; in the presence of high tyrosine and alpha-MSH, melanocytes displayed large, pigmented cell bodies and less dendricity. Exposure to alpha-MSH in the presence of low tyrosine for up to 9 days did not appreciably increase melanin levels, but culturing the human melanocytes in high levels of tyrosine with alpha-MSH increased melanin levels 10-50-fold, depending on the pigmentation background of the donor. A greater induction of melanin accumulation was observed in melanocytes derived from light-skinned donors than was observed in cells obtained from dark-skinned donors. The poor ability of alpha-MSH to stimulate melanin synthesis was not caused by a lack of induction of melanogenic proteins, as alpha-MSH increased the expression of microphthalmia (MITF), tyrosinase, dopachrome tautomerase (DCT), and Pmel-17, compared to untreated cells or cells stimulated by phorbol ester alone, regardless of tyrosine levels. DCT levels were greatly induced by low tyrosine with alpha-MSH, but were dramatically decreased by high tyrosine with alpha-MSH. Interestingly, in this same medium (high tyrosine), MITF levels also decreased after 2 weeks and were barely detectable by the third week. Despite the absence of MITF at 3 weeks of treatment in high tyrosine medium, tyrosinase levels remained high, thereby suggesting that additional factors must be responsible for tyrosinase transcription in human melanocytes. Our results indicate that tyrosine levels can regulate the proliferative activity induced by alpha-MSH, as well as the extent of melanogenesis in normal human melanocytes. The significance of this work is that tyrosine levels may be part of the mechanism that switches melanocytes out of a proliferative status and into a melanin-synthesizing, terminally differentiated phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.