Landscape genetic approaches offer the promise of increasing our understanding of the influence of habitat features on genetic structure. We assessed the genetic diversity of the endangered golden-cheeked warbler (Dendroica chrysoparia) across their breeding range in central Texas and evaluated the role of habitat loss and fragmentation in shaping the population structure of the species. We determined genotypes across nine microsatellite loci of 109 individuals from seven sites representing the major breeding concentrations of the species. No evidence of a recent population bottleneck was found. Differences in allele frequencies were highly significant among sites. The sampled sites do not appear to represent isolated lineages requiring protection as separate management units, although the amount of current gene flow is insufficient to prevent genetic differentiation. Measures of genetic differentiation were negatively associated with habitat connectivity and the percentage of forest cover between sites, and positively associated with geographic distance and the percentage of agricultural land between sites. The northernmost site was the most genetically differentiated and was isolated from other sites by agricultural lands. Fragmentation of breeding habitat may represent barriers to dispersal of birds which would pose no barrier to movement during other activities such as migration.
Black-capped vireos (Vireo atricapilla), an endangered, migratory species dependent upon early successional habitat, have experienced significant recovery since its protection. In light of its vagility and known increase in population size and range, limited genetic differentiation would be expected in the species. Using 15 microsatellite loci and an extensive sampling regime, we detected significant overall genetic differentiation (F(ST) = 0.021) and high interpopulation differentiation compared to other migratory birds. Although proximate sites (separated by < 20 km) tended to be genetically similar, there was no apparent association of either geographical distance or landscape attributes with differentiation between sites. Evidence of a population bottleneck was also detected in a site located near other large concentrations of birds. Although black-capped vireos are capable of large-scale movements and the population has experienced a recent expansion, dispersal appears too insufficient to eliminate the genetic differentiation resulting from restricted colonization of ephemeral habitats.
As multiple species of bats are currently experiencing dramatic declines in populations due to white‐nose syndrome (WNS) and other factors, conservation managers have an urgent need for data on the ecology and overall status of populations of once‐common bat species. Standard approaches to obtain data on bat populations often involve capture and handling, requiring extensive expertise and unavoidably resulting in stress to the bats. New methods to rapidly obtain critical data are needed that minimize both the stress on bats and the spread of WNS. Guano provides a noninvasive source of DNA that includes information from the bat, but also dietary items, parasites, and pathogens. DNA metabarcoding is a high‐throughput, DNA‐based identification technique to assess the biodiversity of environmental or fecal samples. We investigated the use of multifaceted DNA metabarcoding (MDM), a technique combining next‐generation DNA sequencing (NGS), DNA barcodes, and bioinformatic analysis, to simultaneously collect data on multiple parameters of interest (bat species composition, individual genotype, sex ratios, diet, parasites, and presence of WNS) from fecal samples using a single NGS run. We tested the accuracy of each MDM assay using samples in which these parameters were previously determined using conventional approaches. We found that assays for bat species identification, insect diet, parasite diversity, and genotype were both sensitive and accurate, the assay to detect WNS was highly sensitive but requires careful sample processing steps to ensure the reliability of results, while assays for nectivorous diet and sex showed lower sensitivity. MDM was able to quantify multiple data classes from fecal samples simultaneously, and results were consistent whether we included assays for a single data class or multiple data classes. Overall, MDM is a useful approach that employs noninvasive sampling and a customizable suite of assays to gain important and largely accurate information on bat ecology and population dynamics.
Genetic viability of threatened and endangered species is of increasing concern with habitat loss and fragmentation. Valuable assessments of the genetic status of endangered species are difficult in most cases, where only single sample estimates are available. Using historical and contemporary samples, we assessed the impact of both historical and recent demographic changes on population genetics of the endangered golden-cheeked warbler, (Dendroica chrysoparia). Our study documents a steep decline in genetic diversity in an endangered species over a 100-year period, along with concurrent increase in genetic differentiation, and low contemporary effective sizes for all the populations we evaluated. While adding to the growing body of literature that describes the genetic impacts of habitat fragmentation, our study may also serve as an informative guide to future management of endangered species. Our study underlines the importance of long term population genetic monitoring in understanding the full extent of genetic changes in endangered species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.