Introduction: Like many tissues, the dental pulp is equipped with innate and adaptive immune responses, designed to defend against infection and limit its spread. The pulp's innate immune response includes the synthesis and release of antimicrobial peptides by several dental pulp cell types. These naturally-occurring antimicrobial peptides have broad spectrum activity against bacteria, fungi and viruses. There is a resurgence of interest in the bioactivities of naturally-occurring antimicrobial peptides, largely driven by the need to develop alternatives to antibiotics. Methods: This narrative review focused on the general properties of antimicrobial peptides, providing an overview of their sources and actions within the dental pulp. Results: We summarized the relevance of antimicrobial peptides in defending the dental pulp, highlighting the potential for many of these antimicrobials to be modified or mimicked for prospective therapeutic use. Conclusion: Antimicrobial peptides and novel peptide-based therapeutics are particularly attractive as emerging treatments for polymicrobial infections, such as endodontic infections, because of their broad activity against a range of pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.