The wheat curl mite (WCM), Aceria tosichella, and the plant viruses it transmits represent an invasive mite-virus complex that has affected cereal crops worldwide. The main damage caused by WCM comes from its ability to transmit and spread multiple damaging viruses to cereal crops, with Wheat streak mosaic virus (WSMV) and Wheat mosaic virus (WMoV) being the most important. Although WCM and transmitted viruses have been of concern to cereal growers and researchers for at least six decades, they continue to represent a challenge. In older affected areas, for example in North America, this mite-virus complex still has significant economic impact. In Australia and South America, where this problem has only emerged in the last decade, it represents a new threat to winter cereal production. The difficulties encountered in making progress towards managing WCM and its transmitted viruses stem from the complexity of the pathosystem. The most effective methods for minimizing losses from WCM transmitted viruses in cereal crops have previously focused on cultural and plant resistance methods. This paper brings together information on biological and ecological aspects of WCM, including its taxonomic status, occurrence, host plant range, damage symptoms and economic impact. Information about the main viruses transmitted by WCM is also included and the epidemiological relationships involved in this vectored complex of viruses are also addressed. Management strategies that have been directed at this mite-virus complex are presented, including plant resistance, its history, difficulties and advances. Current research perspectives to address this invasive mite-virus complex and minimize cereal crop losses worldwide are also discussed.
Eriophyoid mites are excellent candidates for ethological research using the approaches of behavioural ecology and sociobiology. These tiny haplodiploid mites are highly specialized plant parasites, producing galls, forming nests, inhabiting refuges or living freely on plants. They reproduce via spermatophores deposited on a substrate and without pairing, which is a fascinating, though still poorly understood, mode of reproduction widespread in some groups of arthropods. Eriophyoid males can be involved in external sperm competition. In some species they also guard pre-emergent females and deposit spermatophores beside them. Although slow-walking, the minute eriophyoid mites can disperse for long distances on air currents or specific animal carriers. After landing on a plant they can distinguish between suitable and unsuitable hosts. Biological observations on a deuterogynous species indicate that parasociality could occur among eriophyoid mites. Many eriophyoids are of economic importance. Knowledge of their behaviour may promote understanding their ecology, may resolve problems in their phylogeny and may help developing methods for their control. In this paper, attention is directed to dispersal modes of eriophyoid mites, their feeding and host acceptance, spermatophore deposition and mating, defence against predators, and social behaviour.
The wheat curl mite (WCM), Aceria tosichella (Keifer, 1969), is one of the primary pests of wheat and other cereals throughout the world. Traditional taxonomy recognises WCM as a single eriophyoid species; however, a recent study suggested that two genetic lineages of WCM in Australia might represent putative species. Here, we investigate WCM populations from different host plants in Australia, South America and Europe and test the hypothesis that WCM is, in fact, a complex of cryptic species. We used morphological data in combination with nucleotide sequences of the mitochondrial cytochromec oxidase subunitI (COI) and nuclear D2 region of 28S rDNA and internal transcribed spacer region (ITS1, ITS2) sequences. The molecular analyses did not support the monophyly of A. tosichella because the outgroup A. tulipae (Keifer, 1938) is grouped within WCM. The molecular datasets indicated the existence of distinct lineages within WCM, with the distances between lineages corresponding to interspecific divergence. Morphological analyses failed to clearly separate WCM populations and lineages, but completely separated A. tulipae from A. tosichella. The results suggest that what has been recognised historically as a single species is, in fact, a complex of several genetically isolated evolutionary lineages that demonstrate potential as cryptic species. Hence, their discrimination using solely morphological criteria may be misleading. These findings are particularly significant because of the economic importance of WCM as a direct pest and vector of plant viruses.
In 1991, the poinsettia strain, silverleaf whitefly or B biotype of Bemisia tabaci was detected in Brazil. This variant is a far more serious agricultural pest than the previously prevalent non-B (BR) biotype. The correct identification of B. tabaci is problematic since it is highly polymorphic with extreme plasticity in key morphological characters that vary according to the host. RAPD-PCR was used to survey the B biotype and other biotypes of B. tabaci in Brazil. Whiteflies were collected from cultivated plants and weeds from 57 different localities and on 27 distinct crops. RAPD analyses using two selected 10-mer primers reliably identified the BR biotype and the B biotype of B. tabaci and also differentiated other whitefly species. The presence of the B biotype was confirmed in 20 Brazilian states. The BR and B biotypes of B. tabaci were found to coexist in the whitefly populations of three different localities: Jaboticabal, SP; Rondonópolis and Cuiabá, MT, and Goiânia, GO.
Bemisia tabaci (Genn.) was considered a secondary pest in Brazil until 1990, despite being an efficient geminivirus vector in beans and soybean. In 1991, a new biotype, known as B. tabaci B biotype (=B. argentifolii) was detected attacking weed plants and causing phytotoxic problems in Cucurbitaceae. Nowadays, B. tabaci is considered one of the most damaging whitefly pests in agricultural systems worldwide that transmits more than 60 different plant viruses. Little is known about the genetic variability of these populations in Brazil. Knowledge of the genetic variation within whitefly populations is necessary for their efficient control and management. The objectives of the present study were to use RAPD markers (1) to estimate the genetic diversity of B. tabaci populations, (2) to study the genetic relationships among B. tabaci biotypes and two other whitefly species and (3) to discriminate between B. tabaci biotypes. A sample of 109 B. tabaci female individuals obtained from 12 populations in Brazil were analyzed and compared to the A biotype from Arizona (USA) and B biotype from California (USA) and Paraguay. Trialeurodes vaporariorum and Aleurodicus cocois samples were also included. A total of 72 markers were generated by five RAPD primers and used in the analysis. All primers produced RAPD patterns that clearly distinguished the Bemisia biotypes and the two other whitefly species. Results also showed that populations of the B biotype have considerable genetic variability. An average Jaccard similarity of 0.73 was observed among the B biotype individuals analyzed. Cluster analysis demonstrated that, in general, Brazilian biotype B individuals are scattered independently in the localities where samples were collected. Nevertheless, some clusters were evident, joining individuals according to the host plants. AMOVA showed that most of the total genetic variation is found within populations (56.70%), but a significant portion of the variation is found between crops (22.73%). The present study showed that the B biotype is disseminated throughout the sampled areas, infesting several host plants and predominates over the A biotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.