PurposeA chemical approach to examine the role of Wnt signaling in maintaining the stemness and/or proliferation of limbal stem/progenitor cells (LSCs).MethodsLSCs were isolated from human donor eyes and cultured as single cells for 12 to 14 days with the following small molecules: IIIC3, an antagonist of the Wnt signaling inhibitor Dickkopf (DKK), and IC15, a Wnt signaling inhibitor. Proliferation of LSCs in the presence of IIIC3 and IC15 was determined by the number of cells and colonies established. Maintenance of stemness was determined by p63α, cytokeratin (K)12, and K14 expression.ResultsActivation of Wnt, through IIIC3-mediated DKK inhibition, resulted in similar colony forming efficiency (CFE) as in the untreated LSCs, but significantly increased the number of cultivated cells 7.21% with 5 μM. Inhibition of Wnt with IC15 significantly reduced the CFE (P ≤ 0.01) and the number of cultivated cells by 16% to 29%. Percentage of cells expressing high levels of p63α (p63αbright) and quantity of small cells (≤12 μm), which contain the LSCs, increased 4.71% and 11.26% (both P < 0.05), respectively, with 5 μM IIIC3. All concentrations of IIIC3 and IC15 retained the K14 undifferentiated marker (97%), while differentiation, as detected by expression of K12, was found in up to 2% of cells in 1 μM IIIC3, 1 μM IC15, or 5 μM IIIC3.ConclusionsWnt signaling is required in LSC proliferation and maintenance of an undifferentiated state. The current study is a proof of concept that the Wnt pathway could be modulated in LSCs to enhance or decrease the efficiency of human LSC expansion.
The self-organization of dorsally-directed microtubules during cortical rotation in the Xenopus egg is essential for dorsal axis formation. The mechanisms controlling this process have been problematic to analyze, owing to difficulties in visualizing microtubules in living egg. Also, the order of events occurring at the onset of cortical rotation have not been satisfactorily visualized in vivo and have been inferred from staged fixed samples. To address these issues, we have characterized the dynamics of total microtubule and plus end behavior continuously throughout cortical rotation, as well as in oocytes and unfertilized eggs. Here, we show that the nascent microtubule network forms in the cortex but associates with the deep cytoplasm at the start of rotation. Importantly, plus ends remain cortical and become increasingly more numerous and active prior to rotation, with dorsal polarization occurring rapidly after the onset of rotation. Additionally, we show that vegetally localized Trim36 is required to attenuate dynamic plus end growth, suggesting that vegetal factors are needed to locally coordinate growth in the cortex.
RNA localization is a fundamental mechanism for controlling cell structure and function. Early development in fish and amphibians requires the localization of specific mRNAs to establish the initial differences in cell fates prior to the onset of zygotic genome activation. RNA localization in these oocytes (e.g., Xenopus and zebrafish) requires that animal-vegetal polarity be established early in oogenesis, mediated by formation of the Balbiani body/mitochondrial cloud. This structure serves as a platform for assembly and transport of germline determinants to the future vegetal pole and also sets up the machinery for the localization of non-germline transcripts later in oogenesis. Understanding these polarization and localization mechanisms is critical for understanding the basis for early embryonic development in these organisms and also for understanding the role of RNA compartmentalization in animal gametogenesis. Here we outline recent advances in elucidating the molecular basis for the establishment of oocyte polarity at the level of Balbiani body assembly as well as the formation of RNP assemblies for early and late pathway mRNA localization in the oocyte.
The corneal epithelium is consistently regenerated by limbal stem/progenitor cells (LSCs), a very small population of adult stem cells residing in the limbus. Several Wnt ligands, including Wnt6, are preferentially expressed in the limbus. To investigate the role of Wnt6 in regulating proliferation and maintenance of human LSCs in an in vitro LSC expansion setting, we generated NIH-3T3 feeder cells to overexpress different levels of Wnt6. Characterization of LSCs cultured on Wnt6 expressing 3T3 cells showed that high level of Wnt6 increased proliferation of LSCs. Medium and high levels of Wnt6 also increased the percentage of small cells (diameter ≤ 12 µm), a feature of the stem cell population. Additionally, the percentage of cells expressing the differentiation marker K12 was significantly reduced in the presence of medium and high Wnt6 levels. Although Wnt6 is mostly known as a canonical Wnt ligand, our data showed that canonical and non-canonical Wnt signaling pathways were activated in the Wnt6-supplemented LSC cultures, a finding suggesting that interrelationships between both pathways are required for LSC regulation.
The localization and organization of mitochondria- and ribonucleoprotein granule-rich germ plasm is essential for many aspects of germ cell development. In Xenopus, germ plasm is maternally inherited and is required for the specification of primordial germ cells (PGCs). Germ plasm is aggregated into larger patches during egg activation and cleavage and is ultimately translocated perinuclearly during gastrulation. Although microtubule dynamics and a kinesin (Kif4a) have been implicated in Xenopus germ plasm localization, little is known about how germ plasm distribution is regulated. Here, we identify a role for maternal Xenopus Syntabulin in the aggregation of germ plasm following fertilization. We show that depletion of sybu mRNA using antisense oligonucleotides injected into oocytes results in defects in the aggregation and perinuclear transport of germ plasm and subsequently in reduced PGC numbers. Using live imaging analysis, we also characterize a novel role for Sybu in the collection of germ plasm in vegetal cleavage furrows by surface contraction waves. Additionally, we show that a localized kinesin-like protein, Kif3b, is also required for germ plasm aggregation and that Sybu functionally interacts with Kif3b and Kif4a in germ plasm aggregation. Overall, these data suggest multiple coordinate roles for kinesins and adaptor proteins in controlling the localization and distribution of a cytoplasmic determinant in early development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.