Nonintegrating lentiviral (NIL) vectors were produced from HIV-1-based lentiviral vectors by introducing combinations of mutations made to disable the integrase protein itself and to alter the integrase recognition sequences (att) in the viral LTR. NIL vectors with these novel combinations of mutations were used to transduce the human T lymphoid cell line Jurkat and primary human CD34(+) hematopoietic progenitor cells to assess their efficacy measured through transient expression of the enhanced green fluorescent protein (eGFP) reporter gene. The most disabled NIL vectors resulted in initial high levels of eGFP expression (approximately 90% of cells), but expression was transient, diminishing toward background (<0.5%) within less than 1 month. Southern blot analyses of transduced Jurkat cells confirmed the loss of detectable NIL vector sequence (linear form and one- and two-LTR circles) by 1 month. There were low residual levels of integration by NIL vectors (reduced approximately 10(4)-fold compared to wild-type vectors), despite any combination of the engineered changes. Based upon analysis of the sequences of the DNA from the junctions of the vector LTR and cellular chromosomes, these rare integrated NIL vector sequences were not mediated by an integrase-driven mechanism due to reversion of the engineered mutations, but more likely were produced by background recombination events. The development of NIL vectors provides a novel tool for efficient transient gene expression in primary stem cells and hematopoietic and lymphoid cells.
Mucopolysaccharidosis type I (MPS I) is a lysosomal glycosaminoglycan (GAG) storage disorder caused by deficiency of alpha-l-iduronidase (IDUA). In this study, we evaluated the potential to perform gene therapy for MPS I by direct in vivo injection of a lentiviral vector, using an IDUA gene knockout murine model. We compared the efficacy in newborn versus young adult MPS I mice of a single intravenous injection of the lentiviral vector. The extent of transduction was dose-dependent, with the liver receiving the highest level of vector, but other somatic organs reaching almost the same level. The phenotypic manifestations of disease were partially improved in the mice treated as young adults, but were nearly normalized at every end-point measured in the mice treated as neonates. In the neonatally treated mice, the expressed IDUA activity resulted in decreased GAG storage, prevention of skeletal abnormalities, a more normal gross appearance, and improved survival. Most strikingly, significant levels of IDUA enzyme were produced in the brain of mice treated as neonates, with transduction of neurons at high levels. The sustained expression of enzymatically active IDUA in multiple organs had a significant beneficial effect on the phenotypic abnormalities of MPS I, which may be translated to clinical gene therapy of patients with Hurler disease.
Long-term culture-initiating cells (LTC-IC) are hematopoietic progenitors able to generate colony-forming unit-cells (CFU) after 5 to 8 weeks (35 to 60 days) of culture on bone marrow (BM) stroma and represent the most primitive progenitors currently detectable in vitro. We have recently reported that long-term cultures initiated with CD34+CD38- cells from BM or cord blood are able to continue generating CFU for at least 100 days, ie, beyond the standard LTC-IC period. In this report, single-cell cultures from cord blood and retroviral marking of cord blood and BM were used to study whether the subpopulation of CD34+CD38- cells able to generate CFU beyond 60 days (“extended long-term culture-initiating cells” or ELTC-IC) are functionally distinct from LTC-IC in terms of timing of initial clonal proliferation and generative capacity. All cord blood LTC-IC formed clones of greater than 50 cells by day 30. In contrast, cord blood ELTC-IC proliferated later in culture, 50% forming clones after day 30. Although efficient retroviral marking of LTC-IC was seen (25% to 45%), marking of ELTC-IC was inefficient (< 1%), consistent with a more quiescent progenitor population. There was a positive correlation between time of clonal proliferation and generative capacity. ELTC-IC generated threefold to fourfold more progeny than did LTC-IC (P < .002). These studies show that there is a functional hierarchy of progenitors in long-term culture which correlates with their level of quiescence. By extending the LTC-IC assay, a more primitive progenitor may be studied that may be functionally closer to the human long-term repopulation stem cell in vivo.
Using a mouse model of adenosine deaminase-deficient severe combined immune deficiency syndrome (ADA-deficient SCID), we have developed a noninvasive method of gene transfer for the sustained systemic expression of human ADA as enzyme replacement therapy. The method of delivery is a human immunodeficiency virus 1-based lentiviral vector given systemically by intravenous injection on day 1 to 2 of life. In this article we characterize the biodistribution of the integrated vector, the expression levels of ADA enzyme activity in various tissues, as well as the efficacy of systemic ADA expression to correct the ADA-deficient phenotype in this mouse model. The long-term expression of enzymatically active ADA achieved by this method, primarily from transduction of liver and lung, restored immunologic function and significantly extended survival. These studies illustrate the potential for sustained in vivo production of enzymatically active ADA, as an alternative to therapy by frequent injection of exogenous ADA protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.