We study explained variation under the additive hazards regression model for right-censored data. We consider different approaches for developing such a measure, and focus on one that estimates the proportion of variation in the failure time explained by the covariates. We study the properties of the measure both analytically, and through extensive simulations. We apply the measure to a well-known survival dataset as well as the linked surveillance, epidemiology, and end results-Medicare database for prediction of mortality in early stage prostate cancer patients using high-dimensional claims codes.
We consider the conditional treatment effect for competing risks data in observational studies. We derive the efficient score for the treatment effect using modern semiparametric theory, as well as two doubly robust scores with respect to (1) the assumed propensity score for treatment and the censoring model, and (2) the outcome models for the competing risks. An important property regarding the estimators is rate double robustness, in addition to the classical model double robustness. Rate double robustness enables the use of machine learning and nonparametric methods in order to estimate the nuisance parameters, while preserving the root‐n$$ n $$ asymptotic normality of the estimated treatment effect for inferential purposes. We study the performance of the estimators using simulation. The estimators are applied to the data from a cohort of Japanese men in Hawaii followed since 1960s in order to study the effect of mid‐life drinking behavior on late life cognitive outcomes. The approaches developed in this article are implemented in the R package “HazardDiff”.
We consider the conditional treatment effect for competing risks data in observational studies. While it is described as a constant difference between the hazard functions given the covariates, we do not assume specific functional forms for the covariates. We derive the efficient score for the treatment effect using modern semiparametric theory, as well as two doubly robust scores with respect to 1) the assumed propensity score for treatment and the censoring model, and 2) the outcome models for the competing risks. An important asymptotic result regarding the estimators is rate double robustness, in addition to the classical model double robustness. Rate double robustness enables the use of machine learning and nonparametric methods in order to estimate the nuisance parameters, while preserving the root-n asymptotic normality of the estimators for inferential purposes. We study the performance of the estimators using simulation. The estimators are applied to the data from a cohort of Japanese men in Hawaii followed since 1960s in order to study the effect of mid-life drinking behavior on late life cognitive outcomes.
We study explained variation under the additive hazards regression model for right-censored data. We consider different approaches for developing such a measure, and focus on one that estimates the proportion of variation in the failure time explained by the covariates. We study the properties of the measure both analytically, and through extensive simulations. We apply the measure to a well-known survival data set as well as the linked Surveillance, Epidemiology and End Results (SEER)-Medicare database for prediction of mortality in early-stage prostate cancer patients using high dimensional claims codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.