BackgroundSome yeasts have evolved a methylotrophic lifestyle enabling them to utilize the single carbon compound methanol as a carbon and energy source. Among them, Pichia pastoris (syn. Komagataella sp.) is frequently used for the production of heterologous proteins and also serves as a model organism for organelle research. Our current knowledge of methylotrophic lifestyle mainly derives from sophisticated biochemical studies which identified many key methanol utilization enzymes such as alcohol oxidase and dihydroxyacetone synthase and their localization to the peroxisomes. C1 assimilation is supposed to involve the pentose phosphate pathway, but details of these reactions are not known to date.ResultsIn this work we analyzed the regulation patterns of 5,354 genes, 575 proteins, 141 metabolites, and fluxes through 39 reactions of P. pastoris comparing growth on glucose and on a methanol/glycerol mixed medium, respectively. Contrary to previous assumptions, we found that the entire methanol assimilation pathway is localized to peroxisomes rather than employing part of the cytosolic pentose phosphate pathway for xylulose-5-phosphate regeneration. For this purpose, P. pastoris (and presumably also other methylotrophic yeasts) have evolved a duplicated methanol inducible enzyme set targeted to peroxisomes. This compartmentalized cyclic C1 assimilation process termed xylose-monophosphate cycle resembles the principle of the Calvin cycle and uses sedoheptulose-1,7-bisphosphate as intermediate. The strong induction of alcohol oxidase, dihydroxyacetone synthase, formaldehyde and formate dehydrogenase, and catalase leads to high demand of their cofactors riboflavin, thiamine, nicotinamide, and heme, respectively, which is reflected in strong up-regulation of the respective synthesis pathways on methanol. Methanol-grown cells have a higher protein but lower free amino acid content, which can be attributed to the high drain towards methanol metabolic enzymes and their cofactors. In context with up-regulation of many amino acid biosynthesis genes or proteins, this visualizes an increased flux towards amino acid and protein synthesis which is reflected also in increased levels of transcripts and/or proteins related to ribosome biogenesis and translation.ConclusionsTaken together, our work illustrates how concerted interpretation of multiple levels of systems biology data can contribute to elucidation of yet unknown cellular pathways and revolutionize our understanding of cellular biology.Electronic supplementary materialThe online version of this article (doi:10.1186/s12915-015-0186-5) contains supplementary material, which is available to authorized users.
Recently, quantitative metabolomics identified a panel of 10-plasma lipids that were highly predictive of conversion to Alzheimer’s disease (AD) in cognitively normal older individuals (N=28, area-under-the-curve; AUC=0.92, sensitivity/specificity of 90%/90%). We failed to replicate these findings in a substantially larger study from two independent cohorts - the Baltimore Longitudinal Study of Aging (BLSA, N=93, AUC=0.642, sensitivity/specificity of 51.6%/65.7%) and the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-RS, N=100, AUC=0.395, sensitivity/specificity of 47.0%/36.0%). In analyses applying machine learning methods to all 187 metabolite concentrations assayed, we find a modest signal in the BLSA with distinct metabolites associated with the preclinical and symptomatic stages of AD, whereas the same methods gave poor classification accuracies in the AGES-RS samples. We believe that ours is the largest blood biomarker study of preclinical AD to date. These findings underscore the importance of large-scale independent validation of index findings from biomarker studies with relatively small sample sizes.
The substrate-specific selenoprotein B of glycine reductase (PB glycine ) from Eubacterium acidaminophilum was purified and characterized. The enzyme consisted of three different subunits with molecular masses of about 22 (a), 25 (b) and 47 kDa (g), probably in an a 2 b 2 g 2 composition. PB glycine purified from cells grown in the presence of [ 75 Se]selenite was labeled in the 47-kDa subunit. The 22-kDa and 47-kDa subunits both reacted with fluorescein thiosemicarbazide, indicating the presence of a carbonyl compound. This carbonyl residue prevented N-terminal sequencing of the 22-kDa (a) subunit, but it could be removed for Edman degradation by incubation with o-phenylenediamine.A DNA fragment was isolated and sequenced which encoded b and a subunits of PB glycine (grdE), followed by a gene encoding selenoprotein A (grdA2) and the g subunit of PB glycine (grdB2). The cloned DNA fragment represented a second GrdB-encoding gene slightly different from a previously identified partial grdB1-containing fragment. Both grdB genes contained an in-frame UGA codon which confirmed the observed selenium content of the 47-kDa (g) subunit. Peptide sequence analyses suggest that grdE encodes a proprotein which is cleaved into the previously sequenced N-terminal 25-kDa (b) subunit and a 22-kDa (a) subunit of PB glycine . Cleavage most probably occurred at an -Asn-Cys-site concomitantly with the generation of the blocking carbonyl moiety from cysteine at the a subunit.
Health has been defined as the capability of the organism to adapt to challenges. In this study, we tested to what extent comprehensively phenotyped individuals reveal differences in metabolic responses to a standardized mixed meal tolerance test (MMTT) and how these responses change when individuals experience moderate weight loss. Metabolome analysis was used in 70 healthy individuals. with profiling of ∼300 plasma metabolites during an MMTT over 8 h. Multivariate analysis of plasma markers of fatty acid catabolism identified 2 distinct metabotype clusters (A and B). Individuals from metabotype B showed slower glucose clearance, had increased intra-abdominal adipose tissue mass and higher hepatic lipid levels when compared with individuals from metabotype A. An NMR-based urine analysis revealed that these individuals also to have a less healthy dietary pattern. After a weight loss of ∼5.6 kg over 12 wk, only the subjects from metabotype B showed positive changes in the glycemic response during the MMTT and in markers of metabolic diseases. Our study in healthy individuals demonstrates that more comprehensive phenotyping can reveal discrete metabotypes with different outcomes in a dietary intervention and that markers of lipid catabolism in plasma could allow early detection of the metabolic syndrome.-Fiamoncini, J., Rundle, M., Gibbons, H., Thomas, E. L., Geillinger-Kästle, K., Bunzel, D., Trezzi, J.-P., Kiselova-Kaneva, Y., Wopereis, S., Wahrheit, J., Kulling, S. E., Hiller, K., Sonntag, D., Ivanova, D., van Ommen, B., Frost, G., Brennan, L., Bell, J. Daniel, H. Plasma metabolome analysis identifies distinct human metabotypes in the postprandial state with different susceptibility to weight loss-mediated metabolic improvements.
Metabolite profiling of tissue samples is a promising approach for the characterization of cancer pathways and tumor classification based on metabolic features. Here, we present an analytical method for nontargeted metabolomics of kidney tissue. Capitalizing on different chemical properties of metabolites allowed us to extract a broad range of molecules covering small polar molecules and less polar lipid classes that were analyzed by LC-QTOF-MS after HILIC and RP chromatographic separation, respectively. More than 1000 features could be reproducibly extracted and analyzed (CV < 30%) in porcine and human kidney tissue, which were used as surrogate matrices for method development. To further assess assay performance, cross-validation of the nontargeted metabolomics platform to a targeted metabolomics approach was carried out. Strikingly, from 102 metabolites that could be detected on both platforms, the majority (>90%) revealed Spearman's correlation coefficients ≥0.3, indicating that quantitative results from the nontargeted assay are largely comparable to data derived from classical targeted assays. Finally, as proof of concept, the method was applied to human kidney tissue where a clear differentiation between kidney cancer and nontumorous material could be demonstrated on the basis of unsupervised statistical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.