This study examined functional brain abnormalities in dyslexic German readers who – due to the regularity of German in the reading direction – do not exhibit the reading accuracy problem of English dyslexic readers, but suffer primarily from a reading speed problem. The in-scanner task required phonological lexical decisions (i.e., Does xxx sound like an existing word?) and presented familiar and unfamiliar letter strings of existing phonological words (e.g., Taxi-Taksi) together with nonwords (e.g., Tazi). Dyslexic readers exhibited the same response latency pattern (words < pseudohomophones < nonwords) as nonimpaired readers, but latencies to all item types were much prolonged. The imaging results were suggestive for a different neural organization of reading processes in dyslexic readers. Specifically, dyslexic readers, in response to lexical route processes, exhibited underactivation in a left ventral occipitotemporal (OT) region which presumably is engaged by visual-orthographic whole word recognition. This region was also insensitive to the increased visual-orthographic processing demands of the sublexical route. Reduced engagement in response to sublexical route processes was also found in a left inferior parietal region, presumably engaged by attentional processes, and in a left inferior frontal region, presumably engaged by phonological processes. In contrast to this reduced engagement of the optimal left hemisphere reading network (ventral OT, inferior parietal, inferior frontal), our dyslexic readers exhibited increased engagement of visual occipital regions and of regions presumably engaged by silent articulatory processes (premotor/motor cortex and subcortical caudate and putamen).
Based on our previous work, we expected the Visual Word Form Area (VWFA) in the left ventral visual pathway to be engaged by both whole-word recognition and by serial sublexical coding of letter strings. To examine this double function, a phonological lexical decision task (i.e., "Does xxx sound like an existing word?") presented short and long letter strings of words, pseudohomophones, and pseudowords (e.g., Taxi, Taksi and Tazi). Main findings were that the length effect for words was limited to occipital regions and absent in the VWFA. In contrast, a marked length effect for pseudowords was found throughout the ventral visual pathway including the VWFA, as well as in regions presumably engaged by visual attention and silent-articulatory processes. The length by lexicality interaction on brain activation corresponds to well-established behavioral findings of a length by lexicality interaction on naming latencies and speaks for the engagement of the VWFA by both lexical and sublexical processes.
BackgroundWe used fMRI to examine functional brain abnormalities of German-speaking dyslexics who suffer from slow effortful reading but not from a reading accuracy problem. Similar to acquired cases of letter-by-letter reading, the developmental cases exhibited an abnormal strong effect of length (i.e., number of letters) on response time for words and pseudowords.ResultsCorresponding to lesions of left occipito-temporal (OT) regions in acquired cases, we found a dysfunction of this region in our developmental cases who failed to exhibit responsiveness of left OT regions to the length of words and pseudowords. This abnormality in the left OT cortex was accompanied by absent responsiveness to increased sublexical reading demands in phonological inferior frontal gyrus (IFG) regions. Interestingly, there was no abnormality in the left superior temporal cortex which—corresponding to the onological deficit explanation—is considered to be the prime locus of the reading difficulties of developmental dyslexia cases.ConclusionsThe present functional imaging results suggest that developmental dyslexia similar to acquired letter-by-letter reading is due to a primary dysfunction of left OT regions.
FMRI data observed under a given experimental condition may be decomposed into two parts: the average effect and the deviation of single replications from this average effect. The average effect is represented by the mean activation over a specific condition. The deviation from this average effect may be decomposed into two components as well: systematic variation due to known empirical factors and pure measurement error. In most fMRI designs deviations from mean activation may be treated as measurement error. Nevertheless, often deviation from the average also may contain systematic variation that can be distinguished from simple measurement error. In these cases, the average fMRI signal may provide only a coarse picture of real brain activation. The larger the variation within-condition, the coarser the average effect and the more relevant is the impact of deviations from it. Systematic deviation from the mean activation may be examined by defining a set of parametric regressors. Here, the applicability of parametric methods to refine the evaluation of fMRI studies is discussed with special emphasis on (i) examination of the impact of continuous predictors on the fMRI signal, (ii) control for variation within each experimental condition and (iii) isolation of specific contributions by different features of a single complex stimulus, especially in the case of a sampled stimulus. The usefulness and applicability of this method are discussed and an example with real data is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.