Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (CO2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a complete understanding of the interplay between eutrophication and aquatic carbon (C) fluxes in warm waters. We test the hypothesis that a warm eutrophic system is a source of both CO2 and CH4 to the atmosphere, and that atmospheric emissions are larger than the burial of OC in sediments. This hypothesis was based on the following assumptions: (i) OC mineralization rates are high in warm water systems, so that water column CO2 production overrides the high C uptake by primary producers, and (ii) increasing trophic status creates favorable conditions for CH4 production. We measured water-air and sediment-water CO2 fluxes, CH4 diffusion, ebullition and oxidation, net ecosystem production (NEP) and sediment OC burial during the dry season in a eutrophic reservoir in the semiarid northeastern Brazil. The reservoir was stratified during daytime and mixed during nighttime. In spite of the high rates of primary production (4858 ± 934 mg C m-2 d-1), net heterotrophy was prevalent due to high ecosystem respiration (5209 ± 992 mg C m-2 d-1). Consequently, the reservoir was a source of atmospheric CO2 (518 ± 182 mg C m-2 d-1). In addition, the reservoir was a source of ebullitive (17 ± 10 mg C m-2 d-1) and diffusive CH4 (11 ± 6 mg C m-2 d-1). OC sedimentation was high (1162 mg C m-2 d-1), but our results suggest that the majority of it is mineralized to CO2 (722 ± 182 mg C m-2 d-1) rather than buried as OC (440 mg C m-2 d-1). Although temporally resolved data would render our findings more conclusive, our results suggest that despite being a primary production and OC burial hotspot, the tropical eutrophic system studied here was a stronger CO2 and CH4 source than a C sink, mainly because of high rates of OC mineralization in the water column and sediments.
The present study evaluated the contamination of a surface water lagoon (Peri Lagoon) in Florianópolis, Santa Catarina, Brazil, by human adenovirus (HAdV), polyomavirus JC (JCPyV), hepatitis A virus (HAV) and rotavirus species A (RVA). Efforts were driven to determine the correlation between viral presence and the physicochemical parameters of the lagoon and measure the distribution of these viruses throughout the year (June 2010 to May 2011). A total of 48 samples were collected, concentrated and analyzed by qPCR (quantitative polymerase chain reaction). Approximately 96% of the samples were positive for HAdV (46/48), 65% were positive for RVA (31/48), 21% were positive for JCPyV (10/48) and 12% were positive for HAV (6/48). The presence of JCPyV was positively correlated with that of NO(2)(-)N, and also there was a positive correlation between the presence of each one of the viruses (HAdV, HAV and RVA) in winter. Samples from water dedicated for human consumption and recreation tested positive for HAdV by qPCR. These samples were also subjected to viral integrity and viability assays: 83% (10/12) contained intact viral particles and 66% (8/12) contained infectious particles. Our results demonstrate the release of human waste into water sources, justifying the urgent need to add viral parameters to water quality surveillance.
AIM: The aim of the present study was to study the vertical variation in phytoplankton community in a subtropical coastal lake and to verify the temporal variation of this community following variation in temperature and dissolved nitrogen and phosphorus. METHODS: Sampling of phytoplankton and abiotic variables were performed monthly from June/2009 to January/2011 at four depths from the central part of Peri Lake. The data were analyzed using analysis of variance, correlation and canonical correspondence analysis. RESULTS: Vertical variation in the phytoplankton community and limnological data did not occur but temporal variation was found. The lake was limited by light and nutrients and this light limitation selected the Cyanobacteria species from Sn and S1 functional groups. Phytoplankton community was composed of five groups, with 31 freshwater taxa, in which Cyanobacteria was the most important with 87.7% of total density and Chlorophyta with 11.8%. Cylindrospermopsis raciborskii was dominant during almost the whole study period because when temperature and phosphorus increased and wind speed decreased Limnothrix sp. density was boosted. Different species of Cyanobacteria filamentous showed correlation with variables in different ways, indicating that some species can co-exist, each of them having distinct niches or can compete by the same resource. CONCLUSION: The phytoplankton presented periodicity driven by annual change in water temperature and nutrients availability. Peri Lake's features allow for the occurrence of a vertically homogeneous water column and the dominance of cyanobacterial functional groups adapted to low underwater light and nutrients deficiency
a b s t r a c tWe investigated the importance of meteorological and lake physical conditions for temporal, horizontal and vertical differences in the concentration of dissolved oxygen (DO) and water temperature, and the derived daily estimates of gross primary production (GPP), ecosystem respiration (R) and net ecosystem production (NEP). Our study was conducted in a subtropical and polymictic lake in Southern Brazil, during a spring-summer transition. Metabolic rates were determined from two sites using the open water oxygen technique. At the central deep site, oxygen sondes were deployed at three depths to assess patterns in vertical variability. During 10 days, an additional DO and temperature sonde was placed near the shoreline allowing us to compare metabolic differences in the surface layers between the central pelagic and littoral site. While GPP was similar, R was significantly higher at the shallower littoral site, causing NEP to be lower, although NEP was still positive. The littoral site had less diel changes in DO and higher daily variability in all metabolic rates. Variability in GPP and R at the littoral site was related to temperature, wind speed and rainfall suggesting that short-term variability in metabolic rates in shallow areas are sensitive to resuspension of sediments caused by a less stable water column. A clear vertical gradient was furthermore found for the metabolic rates at the central deep part of the lake, related to the light extinction, with highest GPP around 0.3 m and decreasing with depth, while respiration showed the inverse pattern. Below subsurface, respiration prevailed at 5.0 m depth and was uncoupled to primary production. Under conditions with high light and temperature, and low wind speeds, the mixing depth became shallower, in turn increasing the water column stability at the deep pelagic site, which resulted in higher mean light available and higher GPP in the water column. Our results confirm that deployment of sensors in different sites and depths allows for spatially, as well as temporally more representative estimates of lake metabolism.
Bacterioplankton communities have a pivotal role in the global carbon cycle. Still the interaction between microbial community and dissolved organic matter (DOM) in freshwater ecosystems remains poorly understood. Here, we report results from a 12-day mesocosm study performed in the epilimnion of a tropical lake, in which inorganic nutrients and allochthonous DOM were supplemented under full light and shading. Although the production of autochthonous DOM triggered by nutrient addition was the dominant driver of changes in bacterial community structure, temporal covariations between DOM optical proxies and bacterial community structure revealed a strong influence of community shifts on DOM fate. Community shifts were coupled to a successional stepwise alteration of the DOM pool, with different fractions being selectively consumed by specific taxa. Typical freshwater clades as Limnohabitans and Sporichthyaceae were associated with consumption of low molecular weight carbon, whereas Gammaproteobacteria and Flavobacteria utilized higher molecular weight carbon, indicating differences in DOM preference among clades. Importantly, Verrucomicrobiaceae were important in the turnover of freshly produced autochthonous DOM, ultimately affecting light availability and dissolved organic carbon concentrations. Our findings suggest that taxonomically defined bacterial assemblages play definite roles when influencing DOM fate, either by changing specific fractions of the DOM pool or by regulating light availability and DOC levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.