Recent advances in immunometabolism link metabolic changes in stimulated macrophages to production of IL-1β, a crucial cytokine in the innate immune response to Mycobacterium tuberculosis. To investigate this pathway in the host response to M. tuberculosis, we performed metabolic and functional studies on human alveolar macrophages, human monocyte-derived macrophages, and murine bone marrow–derived macrophages following infection with the bacillus in vitro. M. tuberculosis infection induced a shift from oxidative phosphorylation to aerobic glycolysis in macrophages. Inhibition of this shift resulted in decreased levels of proinflammatory IL-1β and decreased transcription of PTGS2, increased levels of anti-inflammatory IL-10, and increased intracellular bacillary survival. Blockade or absence of IL-1R negated the impact of aerobic glycolysis on intracellular bacillary survival, demonstrating that infection-induced glycolysis limits M. tuberculosis survival in macrophages through induction of IL-1β. Drugs that manipulate host metabolism may be exploited as adjuvants for future therapeutic and vaccination strategies.
The diversity of the V3 loop tip motif sequences of HIV-1 subtype B was analyzed in patients from Botucatu (Brazil) and Montpellier (France). Overall, 37 tetrameric tip motifs were identified, 28 and 17 of them being recognized in Brazilian and French patients, respectively. The GPGR (P) motif was predominant in French but not in Brazilian patients (53.5% vs 31.0%), whereas the GWGR (W) motif was frequent in Brazilian patients (23.0%) and absent in French patients. Three tip motif groups were considered: P, W, and non-P non-W groups. The distribution of HIV-1 isolates into the three groups was significantly different between isolates from Botucatu and from Montpellier (P < 0.001). A higher proportion of CXCR4-using HIV-1 (X4 variants) was observed in the non-P non-W group as compared with the P group (37.5% vs 19.1%), and no X4 variant was identified in the W group (P < 0.001). The higher proportion of X4 variants in the non-P non-W group was essentially observed among the patients from Montpellier, who have been infected with HIV-1 for a longer period of time than those from Botucatu. Among patients from Montpellier, CD4+ cell counts were lower in patients belonging to the non-P non-W group than in those belonging to the P group (24 cells/µL vs 197 cells/µL; P = 0.005). Taken together, the results suggest that variability of the V3 loop tip motif may be related to HIV-1 coreceptor usage and to disease progression. However, as analyzed by a bioinformatic method, the substitution of the V3 loop tip motif of the subtype B consensus sequence with the different tip motifs identified in the present study was not sufficient to induce a change in HIV-1 coreceptor usage.
IntroductionTuberculosis (TB) still kills over 1 million people annually. The only approved vaccine, BCG, prevents disseminated disease in children but shows low efficacy at preventing pulmonary TB. Myeloid dendritic cells (mDCs) are promising targets for vaccines and immunotherapies to combat infectious diseases due to their essential role in linking innate and adaptive immune responses. DCs undergo metabolic reprogramming following exposure to TLR agonists, which is thought to be a prerequisite for a successful host response to infection. We hypothesized that metabolic rewiring also plays a vital role in the maturation and migration of DCs stimulated with BCG. Consequently, we investigated the role of glycolysis in the activation of primary human myeloid CD1c+ DCs in response to BCG. Methods/resultsWe show that CD1c+ mDC mature and acquire a more energetic phenotype upon challenge with BCG. Pharmacological inhibition of glycolysis with 2-deoxy-D-glucose (2-DG) decreased cytokine secretion and altered cell surface expression of both CD40 and CCR7 on BCG-challenged, compared to untreated, mDCs. Furthermore, inhibition of glycolysis had differential effects on infected and uninfected bystander mDCs in BCG-challenged cultures. For example, CCR7 expression was increased by 2-DG treatment following challenge with BCG and this increase in expression was seen only in BCG-infected mDCs. Moreover, although 2-DG treatment inhibited CCR7-mediated migration of bystander CD1C+ DCs in a transwell assay, migration of BCG-infected cells proceeded independently of glycolysis. DiscussionOur results provide the first evidence that glycolysis plays divergent roles in the maturation and migration of human CD1c+ mDC exposed to BCG, segregating with infection status. Further investigation of cellular metabolism in DC subsets will be required to determine whether glycolysis can be targeted to elicit better protective immunity against Mtb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.