Background Metformin is a widely prescribed antidiabetic BCS Class III drug (low permeability) that depends on active transport for its absorption and disposition. It is recommended by the US Food and Drug Administration as a clinical substrate of organic cation transporter 2/multidrug and toxin extrusion protein for drug-drug interaction studies. Cimetidine is a potent organic cation transporter 2/multidrug and toxin extrusion protein inhibitor. Objective The objective of this study was to provide mechanistic whole-body physiologically based pharmacokinetic models of metformin and cimetidine, built and evaluated to describe the metformin-SLC22A2 808G>T drug-gene interaction, the cimetidine-metformin drug-drug interaction, and the impact of renal impairment on metformin exposure. Methods Physiologically based pharmacokinetic models were developed in PK-Sim ® (version 8.0). Thirty-nine clinical studies (dosing range 0.001-2550 mg), providing metformin plasma and urine data, positron emission tomography measurements of tissue concentrations, studies in organic cation transporter 2 polymorphic volunteers, drug-drug interaction studies with cimetidine, and data from patients in different stages of chronic kidney disease, were used to develop the metformin model. Twenty-seven clinical studies (dosing range 100-800 mg), reporting cimetidine plasma and urine concentrations, were used for the cimetidine model development. Results The established physiologically based pharmacokinetic models adequately describe the available clinical data, including the investigated drug-gene interaction, drug-drug interaction, and drug-drug-gene interaction studies, as well as the metformin exposure during renal impairment. All modeled drug-drug interaction area under the curve and maximum concentration ratios are within 1.5-fold of the observed ratios. The clinical data of renally impaired patients shows the expected increase in metformin exposure with declining kidney function, but also indicates counter-regulatory mechanisms in severe renal disease; these mechanisms were implemented into the model based on findings in preclinical species. Conclusions Whole-body physiologically based pharmacokinetic models of metformin and cimetidine were built and qualified for the prediction of metformin pharmacokinetics during drug-gene interaction, drug-drug interaction, and different stages of renal disease. The model files will be freely available in the Open Systems Pharmacology model repository. Current guidelines for metformin treatment of renally impaired patients should be reviewed to avoid overdosing in CKD3 and to allow metformin therapy of CKD4 patients.
BackgroundDrug–drug interactions (DDIs) and drug–gene interactions (DGIs) pose a serious health risk that can be avoided by dose adaptation. These interactions are investigated in strictly controlled setups, quantifying the effect of one perpetrator drug or polymorphism at a time, but in real life patients frequently take more than two medications and are very heterogenous regarding their genetic background.ObjectivesThe first objective of this study was to provide whole-body physiologically based pharmacokinetic (PBPK) models of important cytochrome P450 (CYP) 2C8 perpetrator and victim drugs, built and evaluated for DDI and DGI studies. The second objective was to apply these models to describe complex interactions with more than two interacting partners.MethodsPBPK models of the CYP2C8 and organic-anion-transporting polypeptide (OATP) 1B1 perpetrator drug gemfibrozil (parent–metabolite model) and the CYP2C8 victim drugs repaglinide (also an OATP1B1 substrate) and pioglitazone were developed using a total of 103 clinical studies. For evaluation, these models were applied to predict 34 different DDI studies, establishing a CYP2C8 and OATP1B1 PBPK DDI modeling network.ResultsThe newly developed models show a good performance, accurately describing plasma concentration–time profiles, area under the plasma concentration–time curve (AUC) and maximum plasma concentration (Cmax) values, DDI studies as well as DGI studies. All 34 of the modeled DDI AUC ratios (AUC during DDI/AUC control) and DDI Cmax ratios (Cmax during DDI/Cmax control) are within twofold of the observed values.ConclusionsWhole-body PBPK models of gemfibrozil, repaglinide, and pioglitazone have been built and qualified for DDI and DGI prediction. PBPK modeling is applicable to investigate complex interactions between multiple drugs and genetic polymorphisms.Electronic supplementary materialThe online version of this article (10.1007/s40262-019-00777-x) contains supplementary material, which is available to authorized users.
Trimethoprim is a frequently-prescribed antibiotic and therefore likely to be co-administered with other medications, but it is also a potent inhibitor of multidrug and toxin extrusion protein (MATE) and a weak inhibitor of cytochrome P450 (CYP) 2C8. The aim of this work was to develop a physiologically-based pharmacokinetic (PBPK) model of trimethoprim to investigate and predict its drug–drug interactions (DDIs). The model was developed in PK-Sim®, using a large number of clinical studies (66 plasma concentration–time profiles with 36 corresponding fractions excreted in urine) to describe the trimethoprim pharmacokinetics over the entire published dosing range (40 to 960 mg). The key features of the model include intestinal efflux via P-glycoprotein (P-gp), metabolism by CYP3A4, an unspecific hepatic clearance process, and a renal clearance consisting of glomerular filtration and tubular secretion. The DDI performance of this new model was demonstrated by prediction of DDIs and drug–drug–gene interactions (DDGIs) of trimethoprim with metformin, repaglinide, pioglitazone, and rifampicin, with all predicted DDI and DDGI AUClast and Cmax ratios within 1.5-fold of the clinically-observed values. The model will be freely available in the Open Systems Pharmacology model repository, to support DDI studies during drug development.
The antiplatelet agent clopidogrel is listed by the FDA as a strong clinical index inhibitor of cytochrome P450 (CYP) 2C8 and weak clinical inhibitor of CYP2B6. Moreover, clopidogrel is a substrate of—among others—CYP2C19 and CYP3A4. This work presents the development of a whole-body physiologically based pharmacokinetic (PBPK) model of clopidogrel including the relevant metabolites, clopidogrel carboxylic acid, clopidogrel acyl glucuronide, 2-oxo-clopidogrel, and the active thiol metabolite, with subsequent application for drug–gene interaction (DGI) and drug–drug interaction (DDI) predictions. Model building was performed in PK-Sim® using 66 plasma concentration-time profiles of clopidogrel and its metabolites. The comprehensive parent-metabolite model covers biotransformation via carboxylesterase (CES) 1, CES2, CYP2C19, CYP3A4, and uridine 5′-diphospho-glucuronosyltransferase 2B7. Moreover, CYP2C19 was incorporated for normal, intermediate, and poor metabolizer phenotypes. Good predictive performance of the model was demonstrated for the DGI involving CYP2C19, with 17/19 predicted DGI AUClast and 19/19 predicted DGI Cmax ratios within 2-fold of their observed values. Furthermore, DDIs involving bupropion, omeprazole, montelukast, pioglitazone, repaglinide, and rifampicin showed 13/13 predicted DDI AUClast and 13/13 predicted DDI Cmax ratios within 2-fold of their observed ratios. After publication, the model will be made publicly accessible in the Open Systems Pharmacology repository.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.