Thousand cankers disease (TCD) is a pest complex formed by the association of the walnut twig beetle (WTB), Pityophthorus juglandis Blackman (Coleoptera: Curculionidae: Scolytinae), with the fungal pathogen Geosmithia morbida Kolařík, Freeland, Utley and Tisserat (Ascomycota: Hypocreales: Bionectriaceae). Current monitoring and detection efforts for WTB rely on a pheromone lure that is effective over a limited distance while plant- and fungal-derived volatiles that may facilitate host location remain poorly understood. In this study, we test the hypothesis that adult beetles are attracted to volatiles of black walnut, Juglans nigra L. (Juglandaceae), and the pathogen, G. morbida. We measured the response of beetles to head-space volatiles collected from leaves and stems of 12 genotypes of black walnut and found genotypic variation in the attractiveness of host trees to adult WTB. Volatile profiles of the most attractive genotypes contained more α-pinene and β-pinene, and adult beetles were attracted to both of these compounds in olfactometer bioassays. In bioassays, we also demonstrated that adult WTB are attracted to volatiles of G. morbida. These findings suggest that, in addition to the aggregation pheromone, dispersing WTB potentially use host plant and fungal volatiles to locate suitable larval hosts. Finally, we conducted a field experiment to determine the extent to which ethanol, a common attractant for bark beetles, and limonene, a known bark beetle repellent, influence the behavior of adult WTB to pheromone-baited traps. Although ethanol did not increase trap capture, WTB were repelled by limonene, suggesting that this compound could be used to manipulate and manage WTB populations.
Evaluating species diversity and patterns of population genetic variation is an essential aspect of conservation biology to determine appropriate management strategies and preserve the biodiversity of native plants. Habitat fragmentation and potential habitat loss are often an outcome of a reduction in naturally occurring wildfires and controlled prescribed burning, as seen in Helianthus verticillatus (whorled sunflower). This endangered, wild relative of the common sunflower, Helianthus annuus, is endemic to four locations in Alabama, Georgia, and Tennessee, United States. Despite its endangered status, there is no recovery plan for H. verticillatus, and knowledge related to its basic plant biology and importance in ecosystem services is mostly unknown. In this study, we utilized 14 microsatellite loci to investigate fine-scale population structure and genetic diversity of H. verticillatus individuals found on two sampling sites within the Georgia population. Our results indicated moderate genetic diversity and the presence of two distinct genetic clusters. Analyses of molecular variance indicated that the majority of variance was individually based, thus confirming high genetic differentiation and limited gene flow between H. verticillatus collection sites. The evidence of a population bottleneck in these sites suggests a recent reduction in population size that could be explained by habitat loss and population fragmentation. Also, high levels of linkage disequilibrium were detected, putatively suggesting clonal reproduction among these individuals. Our study provides a better understanding of fine-scale genetic diversity and spatial distribution of H. verticillatus populations in Georgia. Our results can underpin an original recovery plan for H. verticillatus that could be utilized for the conservation of this endangered species and to promote its persistence in the wild.
In the past decade, black walnut (Juglans nigra) trees throughout western North America have suffered from widespread branch dieback and canopy loss, causing substantial tree mortality (2,3). The fungus, Geosmithia morbida, vectored by the walnut twig beetle (WTB), Pityophthorus juglandis, has been associated with this devastating disease known as Thousand Cankers Disease (TCD) (2,3). In August of 2012, branch samples from TCD symptomatic black walnut trees (5 to 10 cm in diameter and 15 to 30 cm long) were collected on the North Carolina side of the Great Smoky Mountain National Park (GRSM) in Cataloochee Cove (35°37.023′ N, 83°07.351′ W) and near the Big Creek Campground (35°45.290′ N, 83°06.473′ W), in Haywood County. Five symptomatic trees near the Big Creek Campground and three from Cataloochee Cove displayed typical TCD signs including progressive crown thinning, branch flagging, and branch dieback; however, insect holes were not observed. Samples were double bagged in Ziploc plastic bags, sealed in a 19-liter plastic bucket, and transported to the University of Tennessee. Outer bark was removed from the samples and small, elliptical, necrotic cankers were observed. Wood chips (3 to 4 mm2) from cankers were excised and placed on 1/10 strength potato dextrose agar amended with 30 mg/liter streptomycin sulfate and 30 mg/liter chlortetracycline HCL and incubated on a 12-h dark/light cycle at 22°C for 5 to 7 days. Fungal isolates were tentatively identified as G. morbida by using culture morphology, and characteristics of conidiophores and conidia (2). The isolated fungus from the Cataloochee Cove location was grown in 1/10 strength potato dextrose broth at room temperature for 2 weeks. Isolates from Big Creek Campground were contaminated and were not analyzed further. Fungal colonies were tan to light yellow. Conidia were tan, subcylindrical, and catenulate. Conidiophores were multibranched, verticillate, and verrucose. To verify the morphological data, DNA was extracted from fungal mycelia using DNeasy Plant Mini Kit (Qiagen, Valencia, CA) according to the manufacturer's published protocol. Isolates from Cataloochee Cove were characterized using ITS1 and ITS4 universal primers (4). The putative G. morbida isolate (GenBank Accession No. KC461929) had ITS sequences that were 100% identical to the G. morbida type isolate CBS124663 (FN434082.1) (2). Additionally, fungal DNA from Cataloochee Cove was amplified using G. morbida-specific microsatellite loci (GS04, GS27, and GS36) (1). PCR products were analyzed with the QIAxcel Capillary Electrophoresis System (Qiagen) and were similar to those previously published (2). To date, all confirmed cases of TCD in the native range of black walnut have been in urban areas, along rural roadsides and/or fence rows. The report in North Carolina is the first finding of G. morbida, the causal agent of TCD, in a forest setting. References: (1) D. Hadziabdic et al. Conserv. Genet. Resources 4:287, 2012. (2) M. Kolarik et al. Mycologia 103:325, 2011. (3) N. Tisserat et al. Plant Health Progr. doi:10.1094/PHP-2011-0630-01-BR, 2011. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, CA, 1990.
Thousand cankers disease (TCD) is an insect-mediated disease of walnut trees (Juglans spp.) involving walnut twig beetle (Pityophthorus juglandis) and a fungal pathogen (Geosmithia morbida). Although first documented on walnut species in the western U.S., TCD is now found on black walnut (J. nigra) in five states in the eastern U.S. Most collections of P. juglandis or G. morbida are from trees in agriculturally- or residentially-developed landscapes. In 2013, 16 pheromone-baited funnel traps were deployed in or near black walnuts in forested conditions to assess the risk of infestation of forested trees by P. juglandis. Four of the 16 funnel traps collected adult P. juglandis from three forested areas (one in North Carolina and two in Tennessee). These collections, while in forested settings, may still be strongly influenced by human activities. The greatest number of P. juglandis (n = 338) was collected from a forested location in an urbanized area near a known TCD-positive tree. The other two forested locations where P. juglandis (n = 3) was collected were in areas where camping is common, and infested firewood may have introduced P. juglandis unintentionally into the area. Future studies to assess P. juglandis on more isolated forested walnuts are planned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.