We propose a modification of the standard inverse scattering transform for the focusing nonlinear Schrödinger equation (also other equations by natural generalization) formulated with nonzero boundary conditions at infinity. The purpose is to deal with arbitrary‐order poles and potentially severe spectral singularities in a simple and unified way. As an application, we use the modified transform to place the Peregrine solution and related higher‐order “rogue wave” solutions in an inverse‐scattering context for the first time. This allows one to directly study properties of these solutions such as their dynamical or structural stability, or their asymptotic behavior in the limit of high order. The modified transform method also allows rogue waves to be generated on top of other structures by elementary Darboux transformations rather than the generalized Darboux transformations in the literature or other related limit processes. © 2019 Wiley Periodicals, Inc.
We study the fundamental rogue wave solutions of the focusing nonlinear Schrödinger equation in the limit of large order. Using a recently-proposed Riemann-Hilbert representation of the rogue wave solution of arbitrary order k, we establish the existence of a limiting profile of the rogue wave in the large-k limit when the solution is viewed in appropriate rescaled variables capturing the near-field region where the solution has the largest amplitude. The limiting profile is a new particular solution of the focusing nonlinear Schrödinger equation in the rescaled variables -the rogue wave of infinite order -which also satisfies ordinary differential equations with respect to space and time. The spatial differential equations are identified with certain members of the Painlevé-III hierarchy. We compute the far-field asymptotic behavior of the near-field limit solution and compare the asymptotic formulae with the exact solution with the help of numerical methods for solving Riemann-Hilbert problems. In a certain transitional region for the asymptotics the near field limit function is described by a specific globally-defined tritronquée solution of the Painlevé-II equation. These properties lead us to regard the rogue wave of infinite order as a new special function.
The integrable focusing nonlinear Schrödinger equation admits soliton solutions whose associated spectral data consist of a single pair of conjugate poles of arbitrary order. We study families of such multiple-pole solitons generated by Darboux transformations as the pole order tends to infinity. We show that in an appropriate scaling, there are four regions in the spacetime plane where solutions display qualitatively distinct behaviors: an exponential-decay region, an algebraic-decay region, a non-oscillatory region, and an oscillatory region. Using the nonlinear steepest-descent method for analyzing Riemann-Hilbert problems, we compute the leading-order asymptotic behavior in the algebraic-decay, non-oscillatory, and oscillatory regions.
We present a method to compute the inverse scattering transform (IST) for the famed Toda lattice by solving the associated Riemann-Hilbert (RH) problem numerically. Deformations for the RH problem are incorporated so that the IST can be evaluated in O(1) operations for arbitrary points in the (n, t)-domain, including short-and long-time regimes. No time-stepping is required to compute the solution because (n, t) appear as parameters in the associated RH problem. The solution of the Toda lattice is computed in long-time asymptotic regions where the asymptotics are not known rigorously.The authors wish to thank Percy Deift, Peter Miller, and Irina Nenciu for useful discussions and suggestions. The authors also thank the anonymous referees for their suggestions that greatly improved the readability of our paper. DB gratefully acknowledges the hospitality of Courant Institute of Mathematical Sciences, where the majority of this work was done. The authors acknowledge the partial support of the National Science Foundation through the NSF grants DMS-1150427 (DB) and DMS-1303018 (TT). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding sources. 1 We omit subscripts to refer to the functions defined on Z. 2 Many results for the Toda lattice hold with less restrictive choices for σ(n) [34]. For example, the inverse scattering transform method described below can be applied for data in the so-called Marchenko class (i.e., σ(n) = 1 + |n|). We impose exponential decay for the convenience of the numerical implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.