Nitrogen‐fixing microorganisms (diazotrophs) provide biologically available nitrogen to plankton communities and thereby greatly influence the productivity in many marine regions. Various cyanobacterial groups have traditionally been considered the major oceanic diazotrophs, but later noncyanobacterial and presumably heterotrophic diazotrophs were also found to be widespread and potentially important in nitrogen fixation. However, the distribution and activity of different diazotroph groups is still poorly constrained for most oceanic ecosystems. Here we examined diazotroph community structure and activity along a 7500 km south‐north transect between the central equatorial Pacific and the Bering Sea. Nitrogen fixation contributed up to 84% of new production in the upper waters of the subtropical gyre, where the diazotroph community included the gammaproteobacterium γ‐24774A11 and highly active cyanobacterial phylotypes (>50% of total nifH transcript abundance). Nitrogen fixation was sometimes detectable down to 150 m depth and extended horizontally to the edge of the gyre at around 35°N. Nitrogen fixation was even detected far north on the Bering Sea shelf. In the Alaskan Coastal Waters on the Bering Sea shelf, low nitrate together with high dissolved iron concentrations seemed to foster diazotroph growth, including a prominent role of UCYN‐A2, which was abundant near the surface (1.2×105 nifH gene copies L−1). Our study provides evidence for nitrogen fixation in the Bering Sea and suggests a clear contrast in the composition of diazotrophs between the tropical/subtropical gyre and the separate waters in the cold northern regions of the North Pacific.
Marine planktonic cyanobacteria capable of fixing molecular nitrogen (termed 'diazotrophs') are key in biogeochemical cycling, and the nitrogen fixed is one of the major external sources of nitrogen to the open ocean. Candidatus Atelocyanobacterium thalassa (UCYN-A) is a diazotrophic cyanobacterium known for its widespread geographic distribution in tropical and subtropical oligotrophic oceans, unusually reduced genome and symbiosis with a single-celled prymnesiophyte alga. Recently a novel strain of this organism was also detected in coastal waters sampled from the Scripps Institute of Oceanography pier. We analyzed the metagenome of this UCYN-A2 population by concentrating cells by flow cytometry. Phylogenomic analysis provided strong bootstrap support for the monophyly of UCYN-A (here called UCYN-A1) and UCYN-A2 within the marine Crocosphaera sp. and Cyanothece sp. clade. UCYN-A2 shares 1159 of the 1200 UCYN-A1 protein-coding genes (96.6%) with high synteny, yet the average amino-acid sequence identity between these orthologs is only 86%. UCYN-A2 lacks the same major pathways and proteins that are absent in UCYN-A1, suggesting that both strains can be grouped at the same functional and ecological level. Our results suggest that UCYN-A1 and UCYN-A2 had a common ancestor and diverged after genome reduction. These two variants may reflect adaptation of the host to different niches, which could be coastal and open ocean habitats.
[1] Nitrogen fixation is assumed to be most important in oligotrophic subtropical regions of the oceans. Here we show that nitrogen fixation can also be pronounced in the upwelling region off Vietnam. We compare nitrogen fixation rates and other hydro-chemical variables from the monsoon season with the intermonsoon season and find that nitrogen fixation rates are app. 10 times higher during the monsoon season. However, this was not the case in the actual upwelling region -a 40-50 km wide strip along the coastbut further offshore, where the Mekong plume was noticeable. Therefore, we hypothesize that the stability of the water column, micronutrients and/or trace metals in the Mekong river plume may be responsible for enhanced cyanobacterial growth. These cyanobacteria may be either Trichodesmium, unicellular, or diatom-associated symbionts, the latter are known from other river plumes like the Amazon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.