A record‐setting temperature of 17.5°C occurred on 24 March 2015 at the Esperanza station located near the northern tip of the Antarctic Peninsula (AP). We studied the event using surface station data, satellite imagery, reanalysis data, and numerical simulations. The Moderate Resolution Imaging Spectroradiometer Antarctic Ice Shelf Image Archive provides clear evidence for disintegration and advection of sea ice, as well as the formation of melt ponds on the ice sheet surface at the base of the AP mountain range. A deep low‐pressure center over the Amundsen‐Bellingshausen Sea and a blocking ridge over the southeast Pacific provided favorable conditions for the development of an atmospheric river with a northwest‐southeast orientation, directing warm and moist air toward the AP, and triggering a widespread foehn episode. A control simulation using a regional climate model shows the existence of local topographically induced warming along the northern tip of the AP (∼60% of the full temperature signal) and the central part of the eastern AP (>90% of the full temperature signal) with respect to a simulation without topography. These modeling results suggest that more than half of the warming experienced at Esperanza can be attributed to the foehn effect (a local process), rather than to the large‐scale advection of warm air from the midlatitudes. Nevertheless, the local foehn effect also has a large‐scale advection component, since the atmospheric river provides water vapor for orographic precipitation enhancement and latent heat release, which makes it difficult to completely disentangle the role of local versus large‐scale processes in explaining the extreme event.
Northern Chile hosts the driest place on Earth in the Atacama Desert. Nonetheless, an extreme precipitation event affected the region on 24-26 March 2015 with 1-day accumulated precipitation exceeding 40mm in several locations and hourly mean rainfall rates higher than 10mm h(-1), producing floods and resulting in casualties and significant damage. The event is analyzed using ERA-Interim, surface station data, sounding observations, and satellite-based radar. Two main conditions favorable for precipitation were present at the time of the event: (i) a cutoff low (COL) off the coast of northern Chile and (ii) positive sea surface temperature (SST) anomalies over the eastern tropical Pacific. The circulation driven by the COL was strong but not extraordinary. Regional Climate Model, version 4 (RegCM4), is used to test the sensitivity of precipitation to SST anomalies by removing the warm SST anomaly in the eastern tropical Pacific. The cooler simulation produced very similar COL dry dynamics to that simulated in a control run (with observed SST), but suppressed the precipitation by 60%-80% over northern Chile and 100% in parts of the Atacama Desert due to the decreased availability of precipitable water. The results indicate that the warm SST anomaly over the eastern Pacific, favored by the onset of El Nino 2015/16, was instrumental to the extreme precipitation event by providing an anomalous source of water vapor transported to Atacama by the circulation ahead of the COL.Fondo de Financiamiento de Centros de Investigacion en Areas Prioritarias (FONDAP)/Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) Chile 15110009-CR2 Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT)-Chile 3150036 National Laboratory for High Performance Computing (NLHPC) ECM-0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.