Alpha-lipoic acid (ALA) is extensively utilized in multivitamin formulas and anti-aging products. The purpose of this study was to investigate the potential protective benefits of ALA on 5-fluorouracil (5-FU)-induced gastrointestinal mucositis in Wistar albino rats. Tissues from the stomach, small intestine, and large intestine were excised, and blood sera were obtained to identify biochemical indices such as TNF-α, IL-1β, MDA, GPx, SOD, MMP-1, -2, -8, and TIMP-1. A histopathological study was also performed. The results revealed mucositis-elevated TNF-, IL-1, MDA, MMP-1, -2, -8, and TIMP-1 levels in both tissues and sera, and these values dropped dramatically following ALA treatment. Reduced SOD and GPx activities in mucositis groups were reversed in ALA-treated groups. The damage produced by mucositis in the stomach and small intestine regressed in the ALA-treated group, according to histopathological evaluation. Consequently, the implementation of ALA supplementation in 5-FU therapy may act as a protective intervention for cancer patients with gastrointestinal mucositis. In light of the findings, ALA, a food-derived antioxidant with pleiotropic properties, may be an effective treatment for 5-FU-induced gastrointestinal mucositus, and prevent oxidative stress, inflammation, and tissue damage in cancer patients receiving 5-FU therapy.
Irinotecan (CPT-11) is a chemotherapeutic agent involved in the treatment regimens for several malignancies such as colorectal cancer. N-acetylcysteine (NAC) is a strong antioxidant and anti-inflammatory agent used in the treatment of several diseases related to oxidative stress and inflammation. This study aimed at investigating whether NAC provides protection against hepatorenal and gastrointestinal tissue damage induced by CPT-11. Thirty-two Wistar albino rats were divided into four groups as control, NAC, CPT-11, and CPT-11+NAC. Following the experimental period, blood, and tissue samples (liver, kidney, stomach, and small intestine) were collected, and biochemical indicators, together with pro-inflammatory cytokines (TNF-α and IL-1β), matrix metalloproteinases (MMPs), malondialdehyde (MDA), glutathione peroxidase (GPx) and superoxide dismutase (SOD) levels were evaluated. Both the biochemical indicators and the pro-inflammatory cytokines, MMP, and MDA levels increased in animals treated with CPT-11, while SOD and GPx activities decreased. Histopathological evaluation revealed structural damage in all examined tissues. With NAC administration, significant improvements were observed, both biochemically and histologically. In conclusion, the results of the present study suggest that NAC treatment together with CPT-11 may have a beneficial effect on reducing CPT-11 toxicity in rats, by modulating inflammation and the oxidant–antioxidant balance. These results strongly promote further investigative studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.