Aim Cryptogenic species may include those taxa that were historically introduced and are now falsely viewed as native. Investigated here is the scale of cryptogenesis in the North Atlantic Ocean by examining disjunct distributions, defined as temperate species occurring only on both sides of the North Atlantic. Disjunct distributions can be explained by four scenarios: glacial relicts, taxonomic artefacts, natural trans‐oceanic dispersal and human‐mediated introduction. Location North Atlantic Ocean. Methods Model taxa included ascidians, bivalves and hydrozoans. Biogeographic status (native, introduced or cryptogenic) was assigned to all species exhibiting a disjunct distribution, based upon multiple criteria. Results Of 1030 species, 60 have a strictly disjunct distribution. Of these disjunct species, for five species there is no reason to doubt their native status, and 55 species are cryptogenic or introduced. Groups with high relative dispersal capacities do not have disjunct distributions more often. Infaunal bivalves have the lowest relative number of disjunct species; none are cryptogenic or naturally disjunct. This supports the concept that glaciations are unlikely to cause disjunct distributions: there are no studies that provide conclusive evidence for the glacial relict model. Hydrozoa have the highest relative number of disjunct species, which, while historically explained by undocumented rafting, may more likely be the result of dispersal by ships, which travel relatively fast, are independent of currents and provide greater surface area. Main conclusions This reanalysis of the historical biogeography of the North Atlantic marine biota reveals that far more species may have been introduced than previously recognized, potentially significantly altering our fundamental understanding of community evolution and ecology. Species that have been present for centuries and can be important ecological engineers who have shaped contemporary communities are possibly falsely viewed as native: they may in fact be the unrecognized introductions of historical times.
Aim The tunicate Molgula manhattensis has a disjunct amphi‐Atlantic distribution and a recent history of world‐wide introductions. Its distribution could be the result of regional extinctions followed by post‐glacial recolonization, or anthropogenic dispersal. To determine whether the North Atlantic distribution of M. manhattensis is natural or human‐mediated, we analysed mtDNA cytochrome c oxidase subunit I (COI) sequence variation in individuals from cryptogenic and introduced ranges. Location North Atlantic Europe and America; Black Sea; San Francisco Bay; Osaka Bay. Methods Nuclear 18S rDNA sequences were used to resolve phylogenetic relationships and mtDNA COI sequences for phylogeographic analyses. Results Phylogenetic analyses confirmed that M. manhattensis and M. socialis, which are frequently confused, are distinct species. MtDNA haplotype diversity was nearly three times higher with deeper relationships among haplotypes on the North‐east American coast than in Europe. Diversity declined from south to north in America but not in Europe. In areas of known introductions (Black Sea, Japan, San Francisco Bay), M. manhattensis showed variable levels of haplotype diversity. Medium‐to‐high‐frequency haplotypes originating from the North‐west Atlantic were present in two locations of known introductions, but not in Europe. Private haplotypes were found on both sides of the Atlantic and in introduced populations. The mismatch distribution for the North‐east Atlantic coast indicates a recent expansion. Main conclusions Molgula manhattensis is native in North‐east America. However, whether it was introduced or is native to Europe remains equivocal. Additional sampling might or might not reveal the presence of putative private European haplotypes in America. The low European diversity may be explained by low effective population size and a recent expansion, or by low propagule pressure of anthropogenic introduction. Absence of medium‐to‐high‐frequency American haplotypes in Europe may be the result of exclusive transport from southern ports, or long‐term residence. These arguments are ambiguous, and M. manhattensis remains cryptogenic in Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.