Lysimeter and laboratory studies were conducted to identify the controlling chemical processes influencing Pu(IV) mobility through the vadose zone. A 52-L lysimeter containing sediment from the Savannah River Site, South Carolina and solid PuIV(NO3)4 was left exposed to natural wetting and drying cycles for 11 years before the lysimeter sediment was sampled. Pu had traveled 10 cm, with >95% of the Pu remaining within 1.25 cm of the source. Laboratory studies showed that the sediment quickly reduced Pu(V) to Pu(IV) (the pseudo-first-order reduction rate constant, Kobs, was 0.11 h(-1)). Of particular interest was that this same sediment could be induced to release very low concentrations of sorbed Pu under oxidizing conditions, presumably by oxidation of sorbed Pu(IV) to the more mobile Pu(V) species. Transport modeling supported the postulation that Pu oxidation occurred in the lysimeter sediment; the inclusion of an oxidation term in the model produced simulations that capture the Pu depth profile data. By not including the oxidation process in the model, Pu mobility was grossly underestimated by a factor of 3.5. It is concluded that both oxidation and reduction mechanisms can play an important role in Pu transportthrough the vadose zone and should be considered when evaluating disposal of Pu-bearing wastes.
Well-defined solid sources of Pu(III) (PuCl3), Pu(IV) (Pu (NO3)4 and Pu (C2O4)2), and Pu(VI) (Pu02(NO3)2) were placed in lysimeters containing vadose zone sediments and exposed to natural weather conditions for 2 or 11 years. The objective of this study was to measure the release rate of Pu and the changes in the Pu oxidation states from these Pu sources with the intent to develop a reactive transport model source-term. Pu(III) and Pu(IV) sources had identical Pu concentration depth profiles and similar Pu release rates. Source release data indicate that PuIV(C2O4)2 was the least mobile, whereas Pu(VI)O2(NO3)2 was the most mobile. Synchrotron X-ray fluorescence (SXRF) revealed that Pu was very unevenly distributed on the sediment and Mn concentrations were too low (630 mg kg(-1)) and perhaps of the wrong mineralogy to influence Pu distribution. The high stability of sorbed Pu(IV) is proposed to be due to the formation of a stable hydrolyzed Pu(IV) surface species. Plutonium X-ray absorption near-edge spectroscopy (XANES) analysis conducted on sediment recovered at the end of the studyfrom the Pu(IV)(NO3)4- and Pu(III)(III)Cl3-amended lysimeters contained essentially identical Pu distributions: approximately 37% Pu(III), 67% Pu(IV), 0% Pu(V), and 0% Pu(VI). These results were similar to those using a wet chemistry Pu oxidation state assay, except the latter method did not detect any Pu(III) present on the sediment but instead indicated that 93-98% of the Pu existed as Pu(IV). This discrepancy was likely attributable to incomplete extraction of sediment Pu(III) by the wet chemistry method. Although Pu has been known to exist in the +3 oxidation state under microbially induced reducing conditions for decades, to our knowledge, this is the first observation of steady-state Pu(III) in association with natural sediments. On the basis of thermodynamic considerations, Pu(III) has a wide potential distribution, especially in acidic environments, and as such may warrant further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.