Hepatocytes synthesise the majority of serum proteins. This production occurs in the endoplasmic reticulum (ER) and is adjusted by complex local and systemic regulatory mechanisms. Accordingly, serum levels of hepatocyte-made proteins constitute important biomarkers that reflect both systemic processes and the status of the liver. For example, C-reactive protein is an established marker of inflammatory reaction, whereas transferrin emerges as a liver stress marker and an attractive mortality predictor. The high protein flow through the ER poses a continuous challenge that is handled by a complex proteostatic network consisting of ER folding machinery, ER stress response, ER-associated degradation and autophagy. Various disorders disrupt this delicate balance and result in protein accumulation in the ER. These include chronic hepatitis B infection with overproduction of hepatitis B surface antigen or inherited alpha1-antitrypsin deficiency that give rise to ground glass hepatocytes and alpha1-antitrypsin aggregates, respectively. We review these ER storage disorders and their downstream consequences. The interaction between proteotoxic stress and other ER challenges such as lipotoxicity is also discussed. Collectively, this article aims to sharpen our view of liver hepatocytes as the central hubs of protein metabolism.
Iron is both an essential and a potentially toxic element, and its systemic homeostasis is controlled by the iron hormone hepcidin. Hepcidin binds to the cellular iron exporter ferroportin, causes its degradation, and thereby diminishes iron uptake from the intestine and the release of iron from macrophages. Given that hepcidin-resistant ferroportin mutant mice show exocrine pancreas dysfunction, we analysed pancreata of aging hepcidin knockout (KO) mice. Hepcidin and Hfe KO mice were compared with wild-type (WT) mice kept on standard or iron-rich diets. Twelve-month-old hepcidin KO mice were subjected to daily minihepcidin PR73 treatment for 1 week. Six-month-old hepcidin KO mice showed cytoplasmic acinar iron overload and mild pancreatitis, together with elevated expression of the iron uptake mediators DMT1 and Zip14. Acinar atrophy, massive macrophage infiltration, fatty changes and pancreas fibrosis were noted in 1-year-old hepcidin KO mice. As an underlying mechanism, 6-month-old hepcidin KO mice showed increased pancreatic oxidative stress, with elevated DNA damage, apoptosis and activated nuclear factor-κB (NF-κB) signalling. Neither iron overload nor pancreatic damage was observed in WT mice fed iron-rich diet or in Hfe KO mice. Minihepcidin application to hepcidin KO mice led to an improvement in general health status and to iron redistribution from acinar cells to macrophages. It also resulted in decreased NF-κB activation and reduced DNA damage. In conclusion, loss of hepcidin signalling in mice leads to iron overload-induced chronic pancreatitis that is not seen in situations with less severe iron accumulation. The observed tissue injury can be reversed by hepcidin supplementation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Background & AimsLiver fibrosis is the outcome of chronic liver injury. Transforming growth factor‐β (TGF‐β) is a major profibrogenic cytokine modulating hepatic stellate cell (HSC) activation and extracellular matrix homeostasis. This study analyses the effect of Endoglin (Eng), a TGF‐β type III auxiliary receptor, on fibrogenesis in two models of liver injury by HSC‐specific endoglin deletion.MethodsEng expression was measured in human and murine samples of liver injury. After generating GFAPCre(+)EngΔ HSC mice, the impact of Endoglin deletion on chronic liver fibrosis was analysed. For in vitro analysis, Engflox/flox HSCs were infected with Cre‐expressing virus to deplete Endoglin and fibrogenic responses were analysed.ResultsEndoglin is upregulated in human liver injury. The receptor is expressed in liver tissues and mesenchymal liver cells with much higher abundance of the L‐Eng splice variant. Comparing GFAPC re(−)Engf/f to GFAPC re(+)EngΔ HSC mice in toxic liver injury, livers of GFAPC re(+)EngΔ HSC mice showed 39.9% (P < .01) higher Hydroxyproline content compared to GFAPC re(−)Engf/f littermates. Sirius Red staining underlined these findings, showing 58.8% (P < .05) more Collagen deposition in livers of GFAPC re(+)EngΔ HSC mice. Similar results were obtained in mice subjected to cholestatic injury.ConclusionEndoglin isoforms are differentially upregulated in liver samples of patients with chronic and acute liver injury. Endoglin deficiency in HSC significantly aggravates fibrosis in response to injury in two different murine models of liver fibrosis and increases α‐SMA and fibronectin expression in vitro. This suggests that Endoglin protects against fibrotic injury, likely through modulation of TGF‐β signalling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.