The partition functions of three-dimensional N = 2 supersymmetric gauge theories on different manifolds can be expressed as q-hypergeometric integrals. By comparing the partition functions of three-dimensional mirror dual theories, one finds complicated integral identities. In some cases, these identities can be written in the form of pentagon relations. Such identities often have an interpretation as the Pachner's 3-2 move for triangulated manifolds via the so-called 3d-3d correspondence. From the physics perspective, another important application of pentagon identities is that they may be used to construct new solutions to the quantum Yang-Baxter equation.
Статистические суммы трехмерных N = 2 суперсимметричных калибровочных теорий на различных многообразиях можно выразить через q-гипергеометрические интегралы. Путем сравнения статистических сумм трехмерных зеркальных дуальных теорий выведены сложные интегральные тождества. В некоторых случаях эти тождества можно представить в виде пентагонных соотношений. С помощью так называемого (3d-3d)-соответствия эти тождества часто интерпретируются как движение Пахнера 3-2 для триангулированных многообразий. Еще одним важным с точки зрения физических перспектив приложением пентагонных тождеств является возможность их использования для построения новых решений квантового уравнения Янга-Бакстера. Ключевые слова: пентагонное тождество, точные результаты в суперсимметричных калибровочных теориях, гипергеометрические интегралы.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.