Understanding human actions is a key problem in computer vision. However, recognizing actions is only the first step of understanding what a person is doing. In this paper, we introduce the problem of predicting why a person has performed an action in images. This problem has many applications in human activity understanding, such as anticipating or explaining an action. To study this problem, we introduce a new dataset of people performing actions annotated with likely motivations. However, the information in an image alone may not be sufficient to automatically solve this task. Since humans can rely on their lifetime of experiences to infer motivation, we propose to give computer vision systems access to some of these experiences by using recently developed natural language models to mine knowledge stored in massive amounts of text. While we are still far away from fully understanding motivation, our results suggest that transferring knowledge from language into vision can help machines understand why people in images might be performing an action.
We describe an end-to-end neural network weight compression approach that draws inspiration from recent latent-variable data compression methods. The network parameters (weights and biases) are represented in a "latent" space, amounting to a reparameterization. This space is equipped with a learned probability model, which is used to impose an entropy penalty on the parameter representation during training, and to compress the representation using arithmetic coding after training. We are thus maximizing accuracy and model compressibility jointly, in an endto-end fashion, with the rate-error trade-off specified by a hyperparameter. We evaluate our method by compressing six distinct model architectures on the MNIST, CIFAR-10 and ImageNet classification benchmarks. Our method achieves state-ofthe-art compression on VGG-16, LeNet300-100 and several ResNet architectures, and is competitive on LeNet-5.
Certain biological neurons demonstrate a remarkable capability to optimally compress the history of sensory inputs while being maximally informative about the future. In this work, we investigate if the same can be said of artificial neurons in recurrent neural networks (RNNs) trained with maximum likelihood. In experiments on two datasets, restorative Brownian motion and a hand-drawn sketch dataset, we find that RNNs are sub-optimal in the information plane. Instead of optimally compressing past information, they extract additional information that is not relevant for predicting the future. Overcoming this limitation may require alternative training procedures and architectures, or objectives beyond maximum likelihood estimation. * Work done as a part of the Goolge AI Residency program. 1 Because of its symmetry, this is equivalent to the number of bits we can reconstruct of the past given observations of the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.