Polychlorinated biphenyl (PCB) contamination of buildings continues to pose an exposure threat, even decades after their application in the form of calks and other building materials. In this research, we investigate the ability of clothing to sorb PCBs from contaminated air and thereby influence exposure. The equilibrium concentration of PCB-28 and PCB-52 was quantified for nine used clothing fabrics exposed for 56 days
The substance group of very volatile organic compounds (VVOCs) is moving into the focus of indoor air analysis, facing ongoing regulations at international and European levels targeting on indoor air quality and human health. However, there exists at present no validated analysis for the identification and quantification of VVOCs in indoor air. Therefore, the present study targeted on the development of an analytical method in order to sample the maximum possible quantity of VVOCs in indoor air on solid sorbents with subsequent analysis by thermal desorption and coupled gas chromatography/mass spectrometry (TDS-GC/MS). For this purpose, it was necessary to investigate the performance of available sorbents and to optimize the parameters of GC/MS analysis. Stainless steel tubes filled with Carbograph 5TD were applied successfully for low-volume sampling (2–4 l) with minimal breakthrough (< 1%). With the developed method, VVOCs between C3 and C6 of different volatility and polarity can be detected even in trace quantities with low limits of quantitation (LOQ; 1–3 μg m−3). Limitations occur for low molecular weight compounds ≤C3, especially for polar substances, such as carboxylic acids and for some aldehydes and alcohols. Consequently, established methods for the quantification of these compounds in indoor air cannot be fully substituted yet. At least three different analytical techniques are needed to cover the large spectrum of relevant VVOCs in indoor air. In addition, unexpected reaction products might occur and need to be taken into account to avoid misinterpretation of chromatographic signals.
Graphical abstractSolid sorbent sampling of VVOCs (C3-C6) in indoor air with subsequent TDS-GC/MS analysis
Electronic supplementary materialThe online version of this article (10.1007/s00216-018-1004-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.