Securing enterprise networks presents challenges in terms of both their size and distributed structure. Data required to detect and characterize malicious activities may be diffused and may be located across network and endpoint devices.Further, cyberrelevant data routinely exceeds total available storage, bandwidth, and analysis capability, often by several orders of magnitude. Real-time detection of threats within or across very large enterprise networks is not simply an issue of scale, but also a challenge due to the variable nature of malicious activities and their presentations. The system seeks to develop a hierarchy of cyber reasoning layers to detect malicious behavior, characterize novel attack vectors and present an analyst with a contextualized human-readable output from a series of machine learning models. We developed machine learning algorithms for scalable throughput and improved recall for our Multi-Resolution Joint Optimization for Enterprise Security and Forensics (ESAFE) solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.