Abstract-Power control mitigates interference and maintains required QoS levels in cellular wireless networks. An important class of distributed power control (DPC) was proposed by Foschini and Miljanic in 1993, with many variants developed since. Almost all related work focuses on the equilibrium and asymptotic convergence properties. However, for many applications transient behavior is more important. If a link's SIR drops below a critical threshold for too long, the connections over this link will be dropped, rendering the entire concept of equilibrium resource allocation meaningless. This paper proposes a systematic approach to the analysis of transient properties of DPC algorithms, in particular Foschini-Miljanic, based on tools from control theory. Analytically, we present a sufficient condition to ensure that after links reach their minimum SIR levels, their SIR requirements can be guaranteed for future time steps. Computationally, we pose this problem as verifying the invariance of certain regions in the SIR space, which for the basic DPC algorithm can be cast as a Linear Program (LP). Furthermore, using insights gained from the analysis, we propose a preliminary design framework for new iterative power control schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.