Mobile group II introns encode reverse transcriptases (RTs) that function in intron mobility ("retrohoming") by a process that requires reverse transcription of a highly structured, 2-2.5-kb intron RNA with high processivity and fidelity. Although the latter properties are potentially useful for applications in cDNA synthesis and next-generation RNA sequencing (RNA-seq), group II intron RTs have been difficult to purify free of the intron RNA, and their utility as research tools has not been investigated systematically. Here, we developed general methods for the high-level expression and purification of group II intron-encoded RTs as fusion proteins with a rigidly linked, noncleavable solubility tag, and we applied them to group II intron RTs from bacterial thermophiles. We thus obtained thermostable group II intron RT fusion proteins that have higher processivity, fidelity, and thermostability than retroviral RTs, synthesize cDNAs at temperatures up to 81°C, and have significant advantages for qRT-PCR, capillary electrophoresis for RNA-structure mapping, and next-generation RNA sequencing. Further, we find that group II intron RTs differ from the retroviral enzymes in template switching with minimal base-pairing to the 3 ′ ends of new RNA templates, making it possible to efficiently and seamlessly link adaptors containing PCR-primer binding sites to cDNA ends without an RNA ligase step. This novel template-switching activity enables facile and less biased cloning of nonpolyadenylated RNAs, such as miRNAs or protein-bound RNA fragments. Our findings demonstrate novel biochemical activities and inherent advantages of group II intron RTs for research, biotechnological, and diagnostic methods, with potentially wide applications.
HIV-1 induces apoptosis and leads to CD4+ T-lymphocyte depletion in humans. It is still unclear whether HIV-1 kills infected cells directly or indirectly. To elucidate the mechanisms of HIV-1-induced apoptosis, we infected human CD4+ T cells with HIV-1. Enzymatic analysis with fluorometric substrates showed that caspase 2, 3, and 9 were activated in CD4+ T cells with peak levels 48 h after infection. Immunoblotting analysis confirmed the cleavage of pro-caspase 3 and 9, and of specific caspase substrates. Release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria was observed in HIV-infected cells. The cytochrome c and AIF release preceded the reduction of the mitochondrial transmembrane potential and nuclear chromatin condensation. H IV infection led to phosphorylation of p53 at the Ser15 residue, detectable as early as 24 h after infection. The p53 phosphorylation was followed by increased mRNA and protein expression of p21, Bax, HDM2, and p53. Up-regulation of surface FasL expression, accompanied by a down-regulation of Fas-associated proteins (FADD, DAXX, and RIP), was observed 72 h after infection. Our results suggest that HIV activates the p53 pathway, leading to cytochrome c and AIF release with ensuing caspase activation.
CD4(+) T-cell depletion is a characteristic of human immunodeficiency virus type 1 (HIV-1) infection. In this study, modulation of mRNA expression of 6800 genes was monitored simultaneously at eight time points in a CD4(+) T-cell line (CEM-GFP) during HIV infection. The responses to infection included: (1) >30% decrease at 72 h after infection in overall host-cell production of monitored mRNA synthesis, with the replacement of host-cell mRNA by viral mRNA, (2) suppression of the expression of selected mitochondrial and DNA repair gene transcripts, (3) increased expression of the proapoptotic gene and its gene p53-induced product Bax, and (4) activation of caspases 2, 3, and 9. The intense HIV-1 transcription resulted in the repression of much cellular RNA expression and was associated with the induction of apoptosis of infected cells but not bystander cells. This choreographed host gene response indicated that the subversion of the cell transcriptional machinery for the purpose of HIV-1 replication is akin to genotoxic stress and represents a major factor leading to HIV-induced apoptosis.
The TRIM5␣ (tripartite motif 5␣ protein) has been linked to the cross-species restriction in human immunodeficiency virus type 1 (HIV-1) infection of non-human cells, but the mechanism by which this occurs remains to be fully elucidated. Here we demonstrate that the capsid (CA) protein of HIV-1 is more rapidly degraded in cells expressing monkey TRIM5␣ than in cells expressing human TRIM5␣. Other proteins encoded by Gag and Pol are not subject to TRIM5␣-mediated accelerated degradation. The accelerated CA degradation by TRIM5␣ apparently occurs via a nonproteosomal pathway. TRIM5␣ selectively accelerates degradation of the CA population, which reached the cytosol of restrictive cells, but not the CA population, which ended into the vesicular compartment. Given that cytosolic CA represents "productively" entered cores, whereas vesicular CA represents "nonproductively" entered cores, our findings suggest that TRIM5␣ interrupts the infectious pathway of HIV-1 by acting on the incoming cytosolic CA. The mode of viral entry does not influence the accelerated degradation of cytosolic CA by TRIM5␣. Thus, this study reveals a correlation between TRIM5␣-mediated HIV-1 restriction and a selective degradation of cytosolic CA normally associated with productive viral entry.
Dominant epitope-specific CD8؉ T-lymphocyte responses play a central role in controlling viral spread. We explored the basis for the development of this focused immune response in simian immunodeficiency virus (SIV)-and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys through the use of two dominant (p11C and p199RY) and two subdominant (p68A and p56A) epitopes. Using real-time PCR to quantitate T-cell receptor (TCR) variable region beta (V) family usage, we show that CD8 ؉ T-lymphocyte populations specific for dominant epitopes are characterized by a diverse V repertoire, whereas those specific for subdominant epitopes employ a dramatically more focused V repertoire. We also demonstrate that dominant epitope-specific CD8 ؉ T lymphocytes employ TCRs with multiple CDR3 lengths, whereas subdominant epitope-specific cells employ TCRs with a more restricted CDR3 length. Thus, the relative dominance of an epitope-specific CD8 ؉ T-lymphocyte response reflects the clonal diversity of that response. These findings suggest that the limited clonal repertoire of subdominant epitope-specific CD8؉ T-lymphocyte populations may limit the ability of these epitope-specific T-lymphocyte populations to expand and therefore limit the ability of these cell populations to contribute to the control of viral replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.