Optimization problems under uncertain conditions abound in many real-life applications. While solution approaches for probabilistic constraints are often developed in case the uncertainties can be assumed to follow a certain probability distribution, robust approaches are usually applied in case solutions are sought that are feasible for all realizations of uncertainties within some predefined uncertainty set. As many applications contain different types of uncertainties that require robust as well as probabilistic treatments, we deal with a class of joint probabilistic/robust constraints. Focusing on complex uncertain gas network optimization problems, we show the relevance of this class of problems for the task of maximizing free booked capacities in an algebraic model for a stationary gas network. We furthermore present approaches for finding their solution. Finally, we study the problem of controlling a transient system that is governed by the wave equation. The task consists in determining controls such that a certain robustness measure remains below some given upper bound with high probability.
Background: The healthcare sector poses many strategic, tactic and operational planning questions. Due to the historically grown structures, planning is often locally confined and much optimization potential is foregone. Methods: We implemented optimized decision-support systems for ambulatory care for four different real-world case studies that cover a variety of aspects in terms of planning scope and decision support tools. All are based on interactive cartographic representations and are being developed in cooperation with domain experts. The planning problems that we present are the problem of positioning centers for vaccination against Covid-19 (strategical) and emergency doctors (strategical/tactical), the out-of-hours pharmacy planning problem (tactical), and the route planning of patient transport services (operational). For each problem, we describe the planning question, give an overview of the mathematical model and present the implemented decision support application. Results: Mathematical optimization can be used to model and solve these planning problems. However, in order to convince decision-makers of an alternative solution structure, mathematical solutions must be comprehensible and tangible. Appealing and interactive decision-support tools can be used in practice to convince public health experts of the benefits of an alternative solution. The more strategic the problem and the less sensitive the data, the easier it is to put a tool into practice. Conclusions: Exploring solutions interactively is rarely supported in existing planning tools. However, in order to bring new innovative tools into productive use, many hurdles must be overcome.
Background The healthcare sector poses many strategic, tactic and operational planning questions. Due to the historically grown structures, planning is often locally confined and much optimization potential is foregone. Methods We implemented optimized decision-support systems for ambulatory care for four different real-world case studies that cover a variety of aspects in terms of planning scope and decision support tools. All are based on interactive cartographic representations and are being developed in cooperation with domain experts. The planning problems that we present are the problem of positioning centers for vaccination against Covid-19 (strategical) and emergency doctors (strategical/tactical), the out-of-hours pharmacy planning problem (tactical), and the route planning of patient transport services (operational). For each problem, we describe the planning question, give an overview of the mathematical model and present the implemented decision support application. Results Mathematical optimization can be used to model and solve these planning problems. However, in order to convince decision-makers of an alternative solution structure, mathematical solutions must be comprehensible and tangible. Appealing and interactive decision-support tools can be used in practice to convince public health experts of the benefits of an alternative solution. The more strategic the problem and the less sensitive the data, the easier it is to put a tool into practice. Conclusions Exploring solutions interactively is rarely supported in existing planning tools. However, in order to bring new innovative tools into productive use, many hurdles must be overcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.