In soccer, the dominant leg is frequently used for passing and kicking while standing on the non-dominant leg. Consequently, postural control in the standing leg might be superior compared to the kicking leg and is further enhanced with increasing age (i.e., level of playing experience). Unfortunately, leg differences in postural control are associated with an increased risk of injuries. Thus, we examined differences between limbs in unipedal balance performance in young soccer players at different ages. Performance in the Lower Quarter Y Balance Test (YBT-LQ) of the dominant and non-dominant leg and anthropometry was assessed in 76 young male soccer players (under-13 years [U13]: n = 19, U15: n = 14, U17: n = 21, U19: n = 22). Maximal reach distances (% leg length) and the composite scores were used for further analyses. Statistical analyses yielded no statistically significant main effects of leg or significant Leg × Age interactions, irrespective of the measure investigated. However, limb differences in the anterior reach direction were above the proposed cut-off value of >4 cm, which is indicative of increased injury risk. Further, statistically significant main effects of age were found for all investigated parameters, indicating larger reach distances in older (U19) compared to younger (U13) players (except for U15 players). Although reach differences between legs were non-significant, the value in the anterior reach direction was higher than the cut-off value of >4 cm in all age groups. This is indicative of an increased injury risk, and thus injury prevention programs should be part of the training of young soccer players.
Background: In everyday life, people engage in situations involving the concurrent processing of motor (balance) and cognitive tasks (i.e., “dual task situations”) that result in performance declines in at least one of the given tasks. The concurrent practice of both the motor and cognitive task may counteract these performance decrements. The purpose of this study was to examine the effects of single task (ST) compared to dual task (DT) practice on learning a dynamic balance task.Methods: Forty-eight young adults were randomly assigned to either a ST (i.e., motor or cognitive task training only) or a DT (i.e., motor-cognitive training) practice condition. The motor task required participants to stand on a platform and keeping the platform as close to horizontal as possible. In the cognitive task, participants were asked to recite serial subtractions of three. For 2 days, participants of the ST groups practiced the motor or cognitive task only, while the participants of the DT group concurrently performed both. Root-mean-square error (RMSE) for the motor and total number of correct calculations for the cognitive task were computed.Results: During practice, all groups improved their respective balance and/or cognitive task performance. With regard to the assessment of learning on day 3, we found significantly smaller RMSE values for the ST motor (d = 1.31) and the DT motor-cognitive (d = 0.76) practice group compared to the ST cognitive practice group but not between the ST motor and the DT motor-cognitive practice group under DT test condition. Further, we detected significantly larger total numbers of correct calculations under DT test condition for the ST cognitive (d = 2.19) and the DT motor-cognitive (d = 1.55) practice group compared to the ST motor practice group but not between the ST cognitive and the DT motor-cognitive practice group.Conclusion: We conclude that ST practice resulted in an effective modulation of the trained domain (i.e., motor or cognitive) while only DT practice resulted in an effective modulation of both domains (i.e., motor and cognitive). Thus, particularly DT practice frees up central resources that were used for an effective modulation of motor and cognitive processing mechanisms.
Background The sequence of blocked balance training (BT) followed by blocked plyometric training (PT) showed greater improvements in physical performance than vice versa and is explained by a preconditioning effect of BT-related adaptations on subsequent adaptations induced by PT. However, it remains unclear whether beneficial effects can also be induced using alternating instead of blocked BT and PT exercise sequences. Thus, we examined the effects of a blocked versus an alternated sequence of BT and PT on physical performance in trained individuals. Methods Twenty young soccer players (13 years) were randomly assigned to a blocked ( n = 10) or an alternated ( n = 10) intervention group. Both groups trained balance and plyometric exercises for six weeks (two sessions/week). The exercises were conducted in a blocked (three weeks of BT followed by three weeks of PT) or an alternated sequence (weekly change of BT and PT). Assessment of pre- and post-training performance included measures of balance, muscle power, speed, and agility. Results Mainly significant main effects of Test (i.e., pre- to post-test improvements) were observed for the Y-balance test ( p ≤ 0.014, 1.3 ≤ Cohen’s d ≤ 1.81), the squat jump ( p = 0.029, d = 1.36), the countermovement jump ( p = 0.002, d = 2.21), the drop jump ( p = 0.004, d = 1.96), the split times/total time over 15-m sprinting ( p ≤ 0.001, 2.02 ≤ d ≤ 3.08), and the figure-T agility run ( p < 0.001, d = 3.80). Further, tendencies toward significant Test x Group interactions were found for several items of the Y-balance test and for SJ height in favor of the blocked BTPT group. Conclusions Our results indicate that the combined training of balance and plyometric exercises is effective to improve proxies of physical performance in youth soccer players. In addition, there is a limited advantage in some parameters of balance and muscle power for the blocked as compared to the alternated sequence of BT and PT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.