If these findings can be confirmed in larger prospective studies, the results would suggest that both the Rb and p53 status should be utilized as independent prognostic factors in early-stage NSCLC.
A group of enzymes known to be involved in group translocation-type transport mechanisms for the uptake of a variety of nucleotide precursors are enzymatically active both in their natural membrane milieu and in aqueous solution. The activity in aqueous solution markedly differ, however, from the enzymatic activity when the enzyme is membrane localized. The adenine phosphoribosyltransferase (PRT) of E. coli (Hochstadt-Ozer and Stadtman, 71a) is capable of carrying out an exchange reaction between the base moieties of adenine and AMP without requiring P-ribose-PP as an intermediate; the enzyme in aqueous solution requires P-ribose-PP, indicating a different reaction mechanism in the two environments. Like the adenine PRT of E. coli, the hypoxanthine PRT of Salmonella typhimurium (Jackman and Hochstadt, '76) also carried out an exchange reaction on the membrane only and also is more sensitive to a number of inhibitors in aqueous solution relative to the sensitivity when embedded in the membrane. In addition, however, the hypoxanthine PRT, while restricted to hypoxanthine as a substrate in the membrane, also accepts guanine as substrate in its soluble form. The membrane capacities reas determined in a guanine PRT deletion strain (Jackman and Hochstadt, '76). Finally, in mammalian cell lines purine nucleoside phosphorylase, which translocates the ribose moiety of inosine across the plasma membrane of mouse fibroblasts undergoes a 30-fold increase in substrate turnover number upon liberation from the membrane. These data raise two important caveats with respect to study of membrane enzymes and transport. Firstly, an enzyme once solubilized and found to differ kinetically from substrate transport in situ cannot be excluded from participating in translocations in the membrane on the basis of its activity in aqueous solution. Secondly, an enzyme which "appears" largely soluble upon cell rupture cannot be assumed to be a cycloplasmic enzyme because of majority of the solubilized activity may represent only a small fraction of the enzyme molecules highly activated concomitant to their solubilization. In this latter case the ability to activate enzyme still residing on the membrane (e.g., with detergents) would be necessary in order to estimate total membrane associated activity after cell rupture.
Newly replicated deoxyribonucleic acid (DNA) in Mycoplasma gallisepticum A5969 is membrane associated. Cells pulse-labeled 1 to 3 min with 3H-thymidine are lysed by a freeze-thaw procedure. After brief sonic treatment to shear the DNA, differential centrifugation gives a cell fraction (P2) that is enriched sevenfold for pulse-labeled DNA. P2 contains 80% of the total adenosine triphosphatase activity, 65% of the total cholesterol, and morphologically intact terminal bleb structures. Three to four minutes are needed to fully label the DNA growing-point region, whereas 7 to 8 min are required to "chase" 50% of the 3H-labeled DNA. This pulse-chase removes 80 to 85% of the nascent DNA from the P2 fraction.on July 31, 2020 by guest
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.