This study's purpose was to assess the in vivo effect of auto-crosslinked hyaluronic acid (HA) gel, a natural HA derivative with increased viscosity and tissue residence time, on adhesions and healing of injured and surgically repaired rabbit digital flexor tendons. The second and third right deep digital flexor tendons from 48 rabbits (n ¼ 96 tendons) were cut and repaired with a modified Kessler and running peripheral suture. Animals were randomized to two groups, receiving either HA gel or saline injected around both freshly repaired tendons. After 2, 3, 6, and 12 weeks, six rabbits in each group were euthanized. Tendon pull-out force and breaking strength were measured as a value for adhesion formation and tendon healing, respectively. A histological assessment of adhesions and healing was related to the mechanical results. A significantly faster increase in breaking strength was found in HA gel-treated compared to saline-treated tendons; this coincided with a significantly accelerated tissue repair response after injury. No significant difference in adhesion formation was found between the two groups at any time. Our results indicate a significant acceleration of in vivo healing of tendons treated with HA gel. Adhesion formation was unaffected. These results could have important clinical value in promoting rehabilitation after tendon injury. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.