Kawasaki disease is a systemic vasculitis of unknown etiology, with clinical observations suggesting a substantial genetic contribution to disease susceptibility. We conducted a genome-wide association study and replication analysis in 2,173 individuals with Kawasaki disease and 9,383 controls from five independent sample collections. Two loci exceeded the formal threshold for genome-wide significance. The first locus is a functional polymorphism in the IgG receptor gene FCGR2A (encoding an H131R substitution) (rs1801274; P = 7.35 × 10(-11), odds ratio (OR) = 1.32), with the A allele (coding for histadine) conferring elevated disease risk. The second locus is at 19q13, (P = 2.51 × 10(-9), OR = 1.42 for the rs2233152 SNP near MIA and RAB4B; P = 1.68 × 10(-12), OR = 1.52 for rs28493229 in ITPKC), which confirms previous findings(1). The involvement of the FCGR2A locus may have implications for understanding immune activation in Kawasaki disease pathogenesis and the mechanism of response to intravenous immunoglobulin, the only proven therapy for this disease.
Hypovolemic shock (Dengue shock syndrome (DSS)), is the commonest life-threatening complication of dengue. We conducted a genome-wide association study of 2,008 pediatric cases treated for DSS and 2,018 controls from Vietnam. Replication of the most significantly associated markers was carried out in an independent Vietnamese follow-up sample of 1,737 cases and 2,934 controls. Polymorphisms within two genes showed genome-wide significant association with DSS (Pmeta = 4.41 × 10−11, per-allele odds ratio (OR) = 1.34 for MICB rs3132468 located within the broad MHC region and Pmeta = 3.08 × 10−10, per-allele OR = 0.80 for PLCE1 rs3765524). Our data implicates MICB is an important determinant in early immune control of dengue virus infection and PLCE1 a factor in vascular endothelial dysfunction and circulatory hypovolemia.
Detection of DNA methylation in the genome has been possible for decades; however, the ability to deliberately and specifically manipulate local DNA methylation states in the genome has been extremely limited. Consequently, this has impeded our understanding of the direct effect of DNA methylation on transcriptional regulation and transcription factor binding in the native chromatin context. Thus, highly specific targeted epigenome editing tools are needed to address this. Recent adaptations of genome editing technologies, including fusion of the DNMT3A DNA methyltransferase catalytic domain to catalytically inactive Cas9 (dC9-D3A), have aimed to alter DNA methylation at desired loci. Here, we show that these tools exhibit consistent off-target DNA methylation deposition in the genome, limiting their capabilities to unambiguously assess the functional consequences of DNA methylation. To address this, we developed a modular dCas9-SunTag (dC9Sun-D3A) system that can recruit multiple DNMT3A catalytic domains to a target site for editing DNA methylation. dC9Sun-D3A is tunable, specific, and exhibits much higher induction of DNA methylation at target sites than the dC9-D3A direct fusion protein. Importantly, genome-wide characterization of dC9Sun-D3A binding sites and DNA methylation revealed minimal off-target protein binding and induction of DNA methylation with dC9Sun-D3A, compared to pervasive off-target methylation by dC9-D3A. Furthermore, we used dC9Sun-D3A to demonstrate the binding sensitivity to DNA methylation for CTCF and NRF1 in situ. Overall, this modular dC9Sun-D3A system enables precise DNA methylation deposition with the lowest off-target DNA methylation levels reported to date, allowing accurate functional determination of the role of DNA methylation at single loci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.