Abstract. We propose a new algorithm for denoising of multivariate function values given at scattered points in R d . The method is based on the one-dimensional wavelet transform that is applied along suitably chosen path vectors at each transform level. The idea can be seen as a generalization of the relaxed easy path wavelet transform by Plonka (Multiscale Model Simul 7:1474-1496, 2009) to the case of multivariate scattered data. The choice of the path vectors is crucial for the success of the algorithm. We propose two adaptive path constructions that take the distribution of the scattered points as well as the corresponding function values into account. Further, we present some theoretical results on the wavelet transform along path vectors in order to indicate that the wavelet shrinkage along path vectors can really remove noise. The numerical results show the efficiency of the proposed denoising method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.