Weather is a key production factor in agricultural crop production and at the same time the most significant and least controllable source of peril in agriculture. These effects of weather on agricultural crop production have triggered a widespread support for weather derivatives as a means of mitigating the risk associated with climate change on agriculture. However, these products are faced with basis risk as a result of poor design and modelling of the underlying weather variable (temperature). In order to circumvent these problems, a novel time-varying mean-reversion Lévy regime-switching model is used to model the dynamics of the deseasonalized temperature dynamics. Using plots and test statistics, it is observed that the residuals of the deseasonalized temperature data are not normally distributed. To model the nonnormality in the residuals, we propose using the hyperbolic distribution to capture the semiheavy tails and skewness in the empirical distributions of the residuals for the shifted regime. The proposed regime-switching model has a mean-reverting heteroskedastic process in the base regime and a Lévy process in the shifted regime. By using the Expectation-Maximization algorithm, the parameters of the proposed model are estimated. The proposed model is flexible as it modelled the deseasonalized temperature data accurately. However, most farmers in Africa have rarely heard about this effective hedging tool. WD, if introduced in Africa, will be more viable, reliable, and efficient to the agricultural industry and can hedge against the increasing weather changes that affect agriculture since it is devoid of factors like loss adjustments, moral hazards, adverse selections, high premiums, and complex information requirements. To avoid
The effects of weather on agriculture in recent years have become a major global concern. Hence, the need for an effective weather risk management tool (i.e., weather derivatives) that can hedge crop yields against weather uncertainties. However, most smallholder farmers and agricultural stakeholders are unwilling to pay for the price of weather derivatives (WD) because of the presence of basis risks (product-design and geographical) in the pricing models. To eliminate product-design basis risks, a machine learning ensemble technique was used to determine the relationship between maize yield and weather variables. The results revealed that the most significant weather variable that affected the yield of maize was average temperature. A mean-reverting model with a time-varying speed of mean reversion, seasonal mean, and local volatility that depended on the local average temperature was then proposed. The model was extended to a multi-dimensional model for different but correlated locations. Based on these average temperature models, pricing models for futures, options on futures, and basket futures for cumulative average temperature and growing degree-days are presented. Pricing futures on baskets reduces geographical basis risk, as buyers have the opportunity to select the most appropriate weather stations with their desired weight preference. With these pricing models, farmers and agricultural stakeholders can hedge their crops against the perils of extreme weather.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.