Tests of the electron beam injector for the Boeing/Los Alamos Average Power Laser Experiment have demonstrated first time operation of a photocathode radio frequency gun accelerator at 25% duty factor, exceeding previous photocathode operating parameters by three orders of magnitude. The macropulse format was 30 Hz and 8.3 ms with a micropulse frequency of 27 MHz. Average beam currents of up to 32 mA have been accelerated to 5 MeV for an average beam power of 160 kW. The macropulse peak current was 128 mA. The 32 mA average beam current exceeds previous cathode performance by a factor of 1000. Emittance measurements demonstrate excellent electron beam quality.
Exploding bridgewire (EBW) detonators were invented during the Manhattan Project over 75 years ago. Initially developed for precise timing and reproducibility, they continue to be used in many applications. Despite widespread use and reliability, their mechanism for function remains controversial. They provide precision timing, yet their function is described in terms of a “lost time” accounting for nearly half of the function time. Buried in understanding the EBW function is the mystery of how an incoherent impulse such as powering a bridgewire yields the coherent energy output of a detonation. Even the general phenomena by which release of chemical energy in a crystalline organic explosive becomes associated with the sonic plane of a steady detonation wave remain uncertain. Here, we investigate the EBW function with a suite of diagnostics and show that stationary heating occurs during the “lost-time.” We use x-ray radiography to observe the propagation of a shock wave from bridgewire vaporization and establish that the origin of the radially emanating detonation wave is spatially separated from the initial shock. Utilizing the observed temperature as a boundary condition in our explosive response models yields a thermal ignition consistent with the “lost-time” and detonation location consistent with previous work. With these results, we define a direct thermal initiation mechanism for the EBW function consistent with previous integral observations and explain the displacement of initiation from the bridgewire burst in time and space.
Exploding bridgewire (EBW) detonators are used for a variety of purposes and subjected to a wide range of conditions during transport and use, however, few studies have been conducted on stability at high temperatures. Many EBW's contain pentaerythritol tetranitrate (PETN) as the initiating explosive, which has been shown to exhibit a relatively low melt at 141°C, followed by an onset of decomposition of approximately 160°C. In the present work, we have evaluated the behavior of PETN with X-ray radiography in commercial RP-80 EBW detonators at temperatures just above the melt. These experiments show that PETN remains stable in the solid-state, but after reaching the melt temperature is vulnerable to mixing, followed by rapid evolution of gases and decomposition. Our results indicate that the orientation of the thermally treated detonator with respect to gravity is important after the PETN reaches the melted state: this shows for the first time why thermal tests on PETN-based detonators often result in varied outcomes.
Exploding bridgewire detonators are an industry standard technology used for over 75 years and valued for their precise timing and safety characteristics. Despite widespread use, their functional mechanism remains controversial with both shock and non-shock mechanisms attributed. In this work, we reexamine the bridgewire detonator function with a suite of modern diagnostics and compare these observations with the existing literature. Traditional detonator observations consisted of voltage applied to the bridgewire and time dependent current, integral response measurements such as case motion, and more recently Schlieren imaging of the detonator surface. In this work, we add visible light emission, x-ray transmission, proton radiography, and temperature measurements during detonator function in addition to voltage, current, and function times. The addition of in situ observations of light emission, temperature, and density gives us new insight into the mechanisms of explosive bridgewire detonator function. We see a distinct separation in time, location, symmetry, and velocity of bridgewire output and detonation onset. During the time between bridgewire burst and the initiation of detonation, we observe a temperature ramp in the input pellet. In this paper, we present the suite of measurements and comparisons with the literature on integral response measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.