Anomaly-based Intrusion Detection Systems (IDS) can be instrumental in detecting attacks on IT systems. For evaluation and training of IDS, data sets containing samples of common security-scenarios are essential. Existing data sets are not sufficient for training modern IDS. This work introduces a new methodology for recording data that is useful in the context of intrusion detection. The approach presented is comprised of a system architecture as well as a novel framework for simulating security-related scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.