The velocity field in the vicinity of a lasergenerated cavitation bubble in water is investigated by means of particle tracking velocimetry (PTV). Two situations are explored: a bubble collapsing spherically and a bubble collapsing aspherically near a rigid wall. In the first case, the accuracy of the PTV method is assessed by comparing the experimental data with the flow field around the bubble as obtained from numerical simulations of the radial bubble dynamics. The numerical results are matched to the experimental radius-time curve extracted from highspeed photographs by tuning the model parameters. Trajectories of tracer particles are calculated and used to model the experimental process of the PTV measurement. For the second case of a bubble collapsing near a rigid wall, both the bubble shape and the velocity distribution in the fluid around the bubble are measured for different standoff parameters c at several instants in time. The results for c [ 1 are compared with the corresponding results of a boundary-integral simulation. For both cases, good agreement between simulation and experiment is found.
The numerical simulation of compressible two-phase fluid flows exhibits severe difficulties, in particular, when strong variations in the material parameters and high interface velocities are present at the phase boundary. Although several models and discretizations have been developed in the past, a thorough quantitative validation by experimental data and a detailed comparison of numerical schemes are hardly available.Here two different discretizations are investigated, namely, a non-conservative approach proposed by Saurel and Abgrall (SIAM J. Sci. Comput. 21, 1115Comput. 21, (1999) and the real ghost fluid method developed by Tang, Liu and Khoo (SIAM J. Sci. Comput. 28, 278 (2006)). The validation is performed for the case of laser-induced cavitation bubbles collapsing in an infinite medium. For the computations, initial data are deduced implicitly from the experimental data. In particular, the influence of numerical phase transition caused by smearing of the phase boundary is investigated.
Cavitation bubbles are generated in water by low-energy femtosecond laser pulses in the presence of an ultrasonic field. Bubble dynamics and cavitation luminescence are investigated by CCD photography and photomultiplier measurements in dependence on the phase of the acoustic cycle at which the bubbles are generated. The experimental results demonstrate that the initially small laser-generated bubbles can be expanded significantly by the sound field and that weak cavitation luminescence can be observed in two small intervals of the seeding phase. The luminescence yield sensitively depends on the degree of sphericity of bubble collapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.