We continue the study of four-point correlation functions by the hexagon tessellation approach initiated in [38] and [39]. We consider planar tree-level correlation functions in N = 4 supersymmetric Yang-Mills theory involving two non-protected operators. We find that, in order to reproduce the field theory result, it is necessary to include SU(N ) colour factors in the hexagon formalism; moreover, we find that the hexagon approach as it stands is naturally tailored to the single-trace part of correlation functions, and does not account for multi-trace admixtures. We discuss how to compute correlators involving double-trace operators, as well as more general 1/N effects; in particular we compute the whole next-to-leading order in the large-N expansion of tree-level BMN two-point functions by tessellating a torus with punctures. Finally, we turn to the issue of "wrapping", Lüscher-like corrections. We show that SU(N ) colour-dressing reproduces an earlier empirical rule for incorporating single-magnon wrapping, and we provide a direct interpretation of such wrapping processes in terms of N = 2 supersymmetric Feynman diagrams.
The hexagon-form-factor program was proposed as a way to compute threeand higher-point correlation functions in N = 4 super-symmetric Yang-Mills theory and in the dual AdS 5 ×S 5 superstring theory, by exploiting the integrability of the theory in the 't Hooft limit. This approach is reminiscent of the asymptotic Bethe ansatz in that it applies to a large-volume expansion. Finite-volume corrections can be incorporated through Lüscher-like formulae, though the systematics of this expansion is largely unexplored so far. Strikingly, finite-volume corrections may feature negative powers of the 't Hooft coupling g in the small-g expansion, potentially leading to a breakdown of the formalism. In this work we show that the finite-volume perturbation theory for the hexagon is positive and thereby compatible with the weak-coupling expansion for arbitrary n-point functions.
We propose an integrable bootstrap framework for the computation of correlation functions for superstrings in AdS3 × S3 × T4 backgrounds supported by an arbitrary mixture or Ramond-Ramond and Neveu-Schwarz-Neveu-Schwarz fluxes. The framework extends the “hexagon tessellation” approach which was originally proposed for AdS5 × S5 and for the first time it demonstrates its applicability to other (less supersymmetric) setups. We work out the hexagon form factor for two-particle states, including its dressing factors which follow from those of the spectral problem, and we show that it satisfies non-trivial consistency conditions. We propose a bootstrap principle, slightly different from that of AdS5 × S5, which allows to extend the form factor to arbitrarily many particles. Finally, we compare its predictions with some correlation functions of protected operators. Possible applications of this construction include the study of wrapping corrections, of higher-point correlation functions, and of non-planar corrections.
Correlation functions of gauge-invariant composite operators in N = 4 super Yang-Mills theory can be computed by integrability using triangulations. The elementary tile in this process is the hexagon, which should be glued by appropriately inserting resolutions of the identity involving virtual ("mirror") magnons. We consider this problem for five-point functions of protected operators. At one-loop in the 't Hooft coupling, it is necessary to glue three adjacent tiles which involves two virtual magnons scattering among each other. We show that the result can be simplified by using an adapted mirror rotation and employing appropriate summation techniques. The mirror-particle contributions then yield hyperlogarithms of weight two. Finally, we use these results to investigate braiding prescriptions introduced in earlier work on the problem.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.