A nanoantenna with balanced electric and magnetic dipole moments, known as the first Kerker condition, exhibits a directive radiation pattern with zero backscattering. In principle, a nanoantenna can provide even better directionality if higher order moments are properly balanced. Here, we study a generalized Kerker condition at the example of a nanoring nanontenna supporting electric dipole and electric quadrupole moments. Nanoring antennas are well suited since both multipole moments can be almost independently tuned to meet the generalized Kerker condition.
Plasmonic nanorings provide the unique advantage of a pronounced plasmonic field enhancement inside their core. If filled with a polarizable medium, it may significantly enhance its optical effects. Here, we demonstrate this proposition by filling gold nanorings with lithium niobate. The generated second harmonic signal is compared to the signal originating from an unpatterned lithium niobate surface. Measurements and simulation confirm an enhancement of about 20. Applications requiring nanoscopic localized light sources like fluorescence spectroscopy or quantum communication will benefit from our findings.
A novel‐shaped plasmonic chiral nanomaterial exhibiting circular dichroism in the near‐infrared spectral range is presented. Applying on‐edge lithography, a large area with these nanostructures is efficiently covered. This fabrication method offers tunability of the operation bandwidth by tailoring the chiral shape.
An ultra-black (A > 99%) broadband absorber concept on the basis of a needle-like silicon nanostructure called Black Silicon is proposed. The absorber comprises Black Silicon established by inductively coupled plasma reactive ion etching (ICP-RIE) on a highly doped, degenerated silicon substrate. Improved absorbers also incorporate an additional oxide capping layer on the nanostructures and reach an absorptance of A > 99.5% in the range of 350 to 2000 nm and A ∼ 99.8% between 1000 and 1250 nm. Fabrication of the absorbers is consistent with CMOS standards and requires no lithography.
We present an approach for extremely fast, wafer-scale fabrication of chiral starfish metamaterials based on electron beam- and on-edge lithography. A millimeter sized array of both the planar chiral and the true 3D chiral starfish is realized, and their chiroptical performances are compared by circular dichroism measurements. We find optical activity in the visible and near-infrared spectral range, where the 3D starfish clearly outperforms the planar design by almost 2 orders of magnitude, though fabrication efforts are only moderately increased. The presented approach is capable of bridging the gap between high performance optical chiral metamaterials and industrial production by nanoimprint technology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.