Objective
Epigallocatechin-3-gallate (EGCG), a catechin gallate ester, is the major component of green tea and has been demonstrated to inhibit tumor growth as well as inhibit smooth muscle cell migration. We evaluated the effect of the phytochemicals resveratrol, allicin, sulforaphane [SFN] and EGCG, on intimal hyperplasia in the carotid artery injury model.
Methods
Intimal hyperplasia was induced in carotid arteries of adult Sprague-Dawley rats with a wire injury. Experimental animals received intraperitoneal injections of one of the four phytochemicals daily beginning one day prior to surgery and continued for up to 4 weeks. Control animals were administered saline. Carotid specimens were harvested at 2 weeks and subjected to quantitative image analysis. In addition, EGCG specimens were analyzed for cell proliferation, immunohistochemistry, and western blot analysis.
Results
Quantitative image analysis showed significant phytochemical suppression of intimal hyperplasia at 2 and 4 weeks post-operatively with EGCG (62% decrease in intimal area). Significant decreases were also noted at 2 weeks for SFN (56%) and resveratrol (44%), whereas the decrease with allicin (24%) was not significant. Quantification of intimal hyperplasia by intima/media ratio showed similar results. Cell proliferation assay of specimens demonstrated suppression by EGCG. Immunohistochemical staining of EGCG-treated specimens showed ERK suppression but not of the jnk or p38 pathways. Western blot analysis confirmed reduced ERK activation in arteries treated with EGCG.
Conclusion
Intraperitoneal injection of the phytochemicals EGCG, SFN, resveratrol and allicin have suppressive effects on the development of intimal hyperplasia in the carotid artery injury model, with maximal effect due to EGCG. The mechanism of EGCG action may be due to inhibition of ERK activation. EGCG may affect a common pathway underlying either neoplastic cellular growth or vascular smooth muscle cellular proliferation.
The subthalamic nucleus (STN) is theorized to globally suppress movement through connections with downstream basal ganglia structures. Current theories are supported by increased STN activity when subjects withhold an uninitiated action plan, but a critical test of these theories requires studying STN responses when an ongoing action is replaced with an alternative. We perform this test in subjects with Parkinson's disease using an extended reaching task where the movement trajectory changes mid-action. We show that STN activity decreases during action switches, contrary to prevalent theories. Further, beta oscillations in the STN local field potential, which are associated with movement inhibition, do not show increased power or spiking entrainment during switches. We report an inhomogeneous population neural code in STN, with one sub-population encoding movement kinematics and direction and another encoding unexpected action switches. We suggest an elaborate neural code in STN that contributes to planning actions and changing the plans.
The subthalamic nucleus (STN) is theorized to globally suppress movement through connections with downstream basal ganglia structures. Current theories are supported by increased STN activity when subjects withhold an uninitiated action plan, but a critical test of these theories requires studying STN responses when an ongoing action is replaced with an alternative. Here, we perform this test using an extended reaching task with instructions to switch movement trajectory mid-action. We show that STN activity decreases during action switches, contrary to prevalent theories. Further, beta oscillations in the local field potential in STN, which are associated with movement inhibition do not show increased power or entraining of neuronal firing during switches. We report an inhomogeneous population neural code in STN, with one sub-population encoding movement kinematics and direction and another encoding unexpected action switches. We suggest an elaborate neural code in STN that contributes to planning actions and changing the plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.