Crowding, generally defined as the deleterious influence of nearby contours on visual discrimination, is ubiquitous in spatial vision. Crowding impairs the ability to recognize objects in clutter. It has been extensively studied over the last 80 years or so, and much of the renewed interest is the hope that studying crowding may lead to a better understanding of the processes involved in object recognition. Crowding also has important clinical implications for patients with macular degeneration, amblyopia and dyslexia. There is no shortage of theories for crowding-from low-level receptive field models to high-level attention. The current picture is that crowding represents an essential bottleneck for object perception, impairing object perception in peripheral, amblyopic and possibly developing vision. Crowding is neither masking nor surround suppression. We can localize crowding to the cortex, perhaps as early as V1; however, there is a growing consensus for a two-stage model of crowding in which the first stage involves the detection of simple features (perhaps in V1), and a second stage is required for the integration or interpretation of the features as an object beyond V1. There is evidence for top-down effects in crowding, but the role of attention in this process remains unclear. The strong effect of learning in shrinking the spatial extent of crowding places strong constraints on possible models for crowding and for object recognition. The goal of this review is to try to provide a broad, balanced and succinct review that organizes and summarizes the diverse and scattered studies of crowding, and also helps to explain it to the non-specialist. A full understanding of crowding may allow us to understand this bottleneck to object recognition and the rules that govern the integration of features into objects.
Crowding, the inability to recognize objects in clutter, sets a fundamental limit on conscious visual perception and object recognition throughout most of the visual field. Despite how widespread and essential it is to object recognition, reading, and visually guided action, a solid operational definition of what crowding is has only recently become clear. The goal of this review is to provide a broad-based synthesis of the most recent findings in this area, to define what crowding is and is not, and to set the stage for future work that will extend crowding well beyond low-level vision. Here we define five diagnostic criteria for what counts as crowding, and further describe factors that both escape and break crowding. All of these lead to the conclusion that crowding occurs at multiple stages in the visual hierarchy. Dispelling the illusionWith regular flicks of the eye, we establish and maintain the illusion of a continuous highresolution representation of our visual environment. This compelling illusion is easy to dispel by trying to describe the details of objects in your peripheral visual fieldscrutinizing or trying to count objects in the visual periphery is impossible. This partly reflects the well-known decline in visual acuity in peripheral vision. However, the most widespread impediment to reading and object recognition in the periphery is the mysterious process known as crowding-the deleterious effect of clutter on peripheral object recognition. Objects that can be easily identified in isolation seem indistinct and jumbled in clutter (Fig. 1).Crowding is an essential bottleneck, setting limits on object perception, eye and hand movements, visual search, reading and perhaps other functions in peripheral, amblyopic and developing vision. Crowding impairs not only discrimination of object features and contours but the ability to recognize and respond appropriately to objects in clutter. Thus, studying © 2011 Elsevier Ltd. All rights reserved.Corresponding Author: Levi, D.M. (dlevi@berkeley.edu). Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.DML and DW contributed equally to this work. NIH Public Access Operationally defining crowdingThe significance of crowding is clear from phenomenological demonstrations of its power and ubiquity in natural scenes (Fig. 1). Ultimately, however, characterizing and understanding the mechanism(s) of crowding requires more than a phenomenological description. Recent work has established that there are several diagnostic criteria for crowding, and using these as converging evidence can help studies individuate and distingu...
Adult brain plasticity, although possible, remains more restricted in scope than during development. Here, we address conditions under which circuit rewiring may be facilitated in the mature brain. At a cellular and molecular level, adult plasticity is actively limited. Some of these "brakes" are structural, such as perineuronal nets or myelin, which inhibit neurite outgrowth. Others are functional, acting directly upon excitatory-inhibitory balance within local circuits. Plasticity in adulthood can be induced either by lifting these brakes through invasive interventions or by exploiting endogenous permissive factors, such as neuromodulators. Using the amblyopic visual system as a model, we discuss genetic, pharmacological, and environmental removal of brakes to enable recovery of vision in adult rodents. Although these mechanisms remain largely uncharted in the human, we consider how they may provide a biological foundation for the remarkable increase in plasticity after action video game play by amblyopic subjects.
Amblyopia is usually defined as a deficit in optotype (Snellen) acuity with no detectable organic cause. We asked whether this visual abnormality is completely characterized by the deficit in optotype acuity, or whether it has distinct forms that are determined by the conditions associated with the acuity loss, such as strabismus or anisometropia. To decide this issue, we measured optotype acuity, Vernier acuity, grating acuity, contrast sensitivity, and binocular function in 427 adults with amblyopia or with risk factors for amblyopia and in a comparison group of 68 normal observers. Optotype acuity accounts for much of the variance in Vernier and grating acuity, and somewhat less of the variance in contrast sensitivity. Nevertheless, there are differences in the patterns of visual loss among the clinically defined categories, particularly between strabismic and anisometropic categories. We used factor analysis to create a succinct representation of our measurement space. This analysis revealed two main dimensions of variation in the visual performance of our abnormal sample, one related to the visual acuity measures (optotype, Vernier, and grating acuity) and the other related to the contrast sensitivity measures (Pelli-Robson and edge contrast sensitivity). Representing our data in this space reveals distinctive distributions of visual loss for different patient categories, and suggests that two consequences of the associated conditions--reduced resolution and loss of binocularity--determine the pattern of visual deficit. Non-binocular observers with mild-to-moderate acuity deficits have, on average, better monocular contrast sensitivity than do binocular observers with the same acuity loss. Despite their superior contrast sensitivity, non-binocular observers typically have poorer optotype acuity and Vernier acuity, at a given level of grating acuity, than those with residual binocular function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.