Identification of protein binding partners is one of the key challenges of proteomics. We recently introduced a screen for detecting protein-protein interactions based on reassembly of dissected fragments of green fluorescent protein fused to interacting peptides. Here, we present a set of comaintained Escherichia coli plasmids for the facile subcloning of fusions to the green fluorescent protein fragments. Using a library of antiparallel leucine zippers, we have shown that the screen can detect very weak interactions (K(D) approximately 1 mM). In vitro kinetics show that the reassembly reaction is essentially irreversible, suggesting that the screen may be useful for detecting transient interactions. Finally, we used the screen to discriminate cognate from noncognate protein-ligand interactions for tetratricopeptide repeat domains. These experiments demonstrate the general utility of the screen for larger proteins and elucidate mechanistic details to guide the further use of this screen in proteomic analysis. Additionally, this work gives insight into the positional inequivalence of stabilizing interactions in antiparallel coiled coils.
Riboswitches are shape-changing regulatory RNAs that bind chemicals and regulate gene expression, directly coupling sensing to cellular actuation. However, it remains unclear how their sequence controls the physics of riboswitch switching and activation, particularly when changing the ligand-binding aptamer domain. We report the development of a statistical thermodynamic model that predicts the sequence-structure-function relationship for translation-regulating riboswitches that activate gene expression, characterized inside cells and within cell-free transcription–translation assays. Using the model, we carried out automated computational design of 62 synthetic riboswitches that used six different RNA aptamers to sense diverse chemicals (theophylline, tetramethylrosamine, fluoride, dopamine, thyroxine, 2,4-dinitrotoluene) and activated gene expression by up to 383-fold. The model explains how aptamer structure, ligand affinity, switching free energy and macromolecular crowding collectively control riboswitch activation. Our model-based approach for engineering riboswitches quantitatively confirms several physical mechanisms governing ligand-induced RNA shape-change and enables the development of cell-free and bacterial sensors for diverse applications.
Unwanted evolution can rapidly degrade the performance of genetically engineered circuits and metabolic pathways installed in living organisms. We created the Evolutionary Failure Mode (EFM) Calculator to computationally detect common sources of genetic instability in an input DNA sequence. It predicts two types of mutational hotspots: deletions mediated by homologous recombination and indels caused by replication slippage on simple sequence repeats. We tested the performance of our algorithm on genetic circuits that were previously redesigned for greater evolutionary reliability and analyzed the stability of sequences in the iGEM Registry of Standard Biological Parts. More than half of the parts in the Registry are predicted to experience >100-fold elevated mutation rates due to the inclusion of unstable sequence configurations. We anticipate that the EFM Calculator will be a useful negative design tool for avoiding volatile DNA encodings, thereby increasing the evolutionary lifetimes of synthetic biology devices.
By introducing engineered tRNA and aminoacyl-tRNA synthetase pairs into an organism, its genetic code can be expanded to incorporate nonstandard amino acids (nsAAs). The performance of these orthogonal translation systems (OTSs) varies greatly, however, with respect to the efficiency and accuracy of decoding a reassigned codon as the nsAA. To enable rapid and systematic comparisons of these critical parameters, we developed a toolkit for characterizing any Escherichia coli OTS that reassigns the amber stop codon (TAG). It assesses OTS performance by comparing how the fluorescence of strains carrying plasmids encoding a fused RFP-GFP reading frame, either with or without an intervening TAG codon, depends on the presence of the nsAA. We used this kit to (1) examine nsAA incorporation by seven different OTSs, (2) optimize nsAA concentration in growth media, (3) define the polyspecificity of an OTS, and (4) characterize evolved variants of amberless E. coli with improved growth rates.
Riboswitches are sequences of RNA that control gene expression via RNA–ligand interactions, without the need for accessory proteins. Riboswitches consist of an aptamer that recognizes the ligand and an expression platform that couples ligand binding to a change in gene expression. Using in vitro selection, it is possible to screen large (∼1013 members) libraries of RNA sequences to discover new aptamers. However, limitations in bacterial transformation efficiency make screening such large libraries for riboswitch function in intact cells impractical. Here we show that synthetic riboswitches function in an E. coli S30 extract in a manner similar to how they function in intact E. coli cells. We discovered that, although this family of riboswitches regulates the initiation of protein translation, the fate of whether an RNA message is translated is determined during transcription. Thus, ligand binding does not bias a population of rapidly equilibrating RNA structures, but rather, co-transcriptional ligand binding kinetically traps the RNA in a conformation that supports efficient translation. In addition to providing new insights into the mechanisms of action of a family of synthetic riboswitches, our experiments suggest that it may be possible to perform selections for novel synthetic riboswitches in an in vitro system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.